9
14
(K9a
17
)
A knot diagram
1
Linearized knot diagam
7 6 9 1 3 2 5 4 8
Solving Sequence
3,6
2 7 1 5 8 4 9
c
2
c
6
c
1
c
5
c
7
c
4
c
9
c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
18
u
17
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 18 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
18
u
17
+ 11u
16
10u
15
+ 48u
14
39u
13
+ 105u
12
74u
11
+
121u
10
71u
9
+ 75u
8
38u
7
+ 30u
6
18u
5
+ 8u
4
4u
3
+ u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
5
=
u
u
a
8
=
u
5
2u
3
+ u
u
5
+ 3u
3
+ u
a
4
=
u
7
+ 4u
5
+ 4u
3
u
9
+ 5u
7
+ 7u
5
+ 2u
3
+ u
a
9
=
u
14
+ 7u
12
+ 16u
10
+ 11u
8
2u
6
+ 1
u
14
8u
12
23u
10
28u
8
14u
6
4u
4
+ u
2
a
9
=
u
14
+ 7u
12
+ 16u
10
+ 11u
8
2u
6
+ 1
u
14
8u
12
23u
10
28u
8
14u
6
4u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
16
+ 4u
15
40u
14
+ 36u
13
156u
12
+ 124u
11
296u
10
+
204u
9
280u
8
+ 172u
7
132u
6
+ 92u
5
44u
4
+ 40u
3
8u
2
+ 4u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
u
18
+ u
17
+ ··· + u + 1
c
3
, c
8
u
18
u
17
+ ··· u + 1
c
4
u
18
+ u
17
+ ··· + u + 5
c
7
u
18
5u
17
+ ··· 13u + 3
c
9
u
18
+ 9u
17
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
y
18
+ 21y
17
+ ··· + y + 1
c
3
, c
8
y
18
+ 9y
17
+ ··· + y + 1
c
4
y
18
7y
17
+ ··· 91y + 25
c
7
y
18
3y
17
+ ··· + 5y + 9
c
9
y
18
+ y
17
+ ··· + 9y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.480218 + 0.701439I
2.17182 + 6.64525I 0.64041 7.71274I
u = 0.480218 0.701439I
2.17182 6.64525I 0.64041 + 7.71274I
u = 0.260166 + 0.780385I
3.58935 0.58479I 4.18494 0.42463I
u = 0.260166 0.780385I
3.58935 + 0.58479I 4.18494 + 0.42463I
u = 0.417636 + 0.610136I
0.09541 2.06052I 3.02279 + 4.27827I
u = 0.417636 0.610136I
0.09541 + 2.06052I 3.02279 4.27827I
u = 0.554520 + 0.161487I
0.60821 3.09151I 3.11493 + 2.77317I
u = 0.554520 0.161487I
0.60821 + 3.09151I 3.11493 2.77317I
u = 0.434512 + 0.328358I
0.917728 0.973282I 6.11395 + 4.55184I
u = 0.434512 0.328358I
0.917728 + 0.973282I 6.11395 4.55184I
u = 0.04262 + 1.48330I
4.94755 2.36433I 0.96106 + 3.34702I
u = 0.04262 1.48330I
4.94755 + 2.36433I 0.96106 3.34702I
u = 0.11549 + 1.58311I
7.37756 3.98828I 0.01934 + 2.30410I
u = 0.11549 1.58311I
7.37756 + 3.98828I 0.01934 2.30410I
u = 0.13939 + 1.60559I
10.00660 + 8.95499I 3.02415 5.84784I
u = 0.13939 1.60559I
10.00660 8.95499I 3.02415 + 5.84784I
u = 0.07596 + 1.61798I
11.79050 + 0.69909I 5.38255 + 0.31146I
u = 0.07596 1.61798I
11.79050 0.69909I 5.38255 0.31146I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
u
18
+ u
17
+ ··· + u + 1
c
3
, c
8
u
18
u
17
+ ··· u + 1
c
4
u
18
+ u
17
+ ··· + u + 5
c
7
u
18
5u
17
+ ··· 13u + 3
c
9
u
18
+ 9u
17
+ ··· + u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
y
18
+ 21y
17
+ ··· + y + 1
c
3
, c
8
y
18
+ 9y
17
+ ··· + y + 1
c
4
y
18
7y
17
+ ··· 91y + 25
c
7
y
18
3y
17
+ ··· + 5y + 9
c
9
y
18
+ y
17
+ ··· + 9y + 1
7