11a
257
(K11a
257
)
A knot diagram
1
Linearized knot diagam
4 8 1 2 11 10 3 5 6 7 9
Solving Sequence
2,5
4 1
3,9
8 7 11 6 10
c
4
c
1
c
3
c
8
c
7
c
11
c
5
c
10
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h178u
52
830u
51
+ ··· + 4b + 135, 82u
52
+ 389u
51
+ ··· + 4a 64, u
53
6u
52
+ ··· + 5u 1i
I
u
2
= hb + a, a
5
a
4
+ 2a
3
a
2
+ a 1, u + 1i
* 2 irreducible components of dim
C
= 0, with total 58 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h178u
52
830u
51
+ · · · + 4b + 135, 82u
52
+ 389u
51
+ · · · + 4a
64, u
53
6u
52
+ · · · + 5u 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
2u
2
a
9
=
41
2
u
52
389
4
u
51
+ ···
285
4
u + 16
89
2
u
52
+
415
2
u
51
+ ··· + 143u
135
4
a
8
=
24u
52
+
441
4
u
51
+ ··· +
287
4
u
71
4
89
2
u
52
+
415
2
u
51
+ ··· + 143u
135
4
a
7
=
8u
52
143
4
u
51
+ ···
109
4
u +
21
4
183
4
u
52
+ 210u
51
+ ··· +
559
4
u
131
4
a
11
=
1
16
u
52
5
16
u
51
+ ··· +
15
4
u +
17
16
1
16
u
52
+
5
16
u
51
+ ··· +
1
4
u
1
16
a
6
=
0.937500u
52
+ 4.56250u
51
+ ··· + 3.37500u + 0.187500
9
8
u
52
11
2
u
51
+ ···
33
8
u + 1
a
10
=
1
16
u
52
+
5
16
u
51
+ ··· +
5
4
u
1
16
u
52
+
39
8
u
51
+ ··· +
37
8
u
7
8
a
10
=
1
16
u
52
+
5
16
u
51
+ ··· +
5
4
u
1
16
u
52
+
39
8
u
51
+ ··· +
37
8
u
7
8
(ii) Obstruction class = 1
(iii) Cusp Shapes = 95u
52
3551
8
u
51
+ ···
2445
8
u +
625
8
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
53
6u
52
+ ··· + 5u 1
c
2
, c
7
u
53
+ u
52
+ ··· + 32u 32
c
5
u
53
+ 6u
52
+ ··· + 5u + 1
c
6
, c
9
, c
10
u
53
2u
52
+ ··· u 1
c
8
u
53
+ 2u
52
+ ··· 353u 505
c
11
u
53
12u
52
+ ··· + 577u 73
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
y
53
52y
52
+ ··· 3y 1
c
2
, c
7
y
53
+ 33y
52
+ ··· 3584y 1024
c
5
y
53
+ 54y
51
+ ··· + 3y 1
c
6
, c
9
, c
10
y
53
48y
52
+ ··· 5y 1
c
8
y
53
24y
52
+ ··· 2730661y 255025
c
11
y
53
+ 12y
52
+ ··· 67257y 5329
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.982418 + 0.186223I
a = 0.479524 + 0.755081I
b = 0.048069 0.323425I
1.84631 + 0.73042I 0
u = 0.982418 0.186223I
a = 0.479524 0.755081I
b = 0.048069 + 0.323425I
1.84631 0.73042I 0
u = 0.760759 + 0.648532I
a = 0.116454 + 1.176580I
b = 0.921747 0.370981I
1.51168 4.33800I 0
u = 0.760759 0.648532I
a = 0.116454 1.176580I
b = 0.921747 + 0.370981I
1.51168 + 4.33800I 0
u = 0.964025 + 0.386334I
a = 0.434988 1.154090I
b = 0.204570 + 0.572039I
2.96531 + 2.94902I 0
u = 0.964025 0.386334I
a = 0.434988 + 1.154090I
b = 0.204570 0.572039I
2.96531 2.94902I 0
u = 0.680941 + 0.650505I
a = 0.138770 1.031700I
b = 0.944950 + 0.173323I
3.50201 0.91026I 0
u = 0.680941 0.650505I
a = 0.138770 + 1.031700I
b = 0.944950 0.173323I
3.50201 + 0.91026I 0
u = 0.407582 + 0.847824I
a = 0.393026 + 0.322879I
b = 1.32942 + 0.64140I
2.63587 + 9.48987I 0. 7.65628I
u = 0.407582 0.847824I
a = 0.393026 0.322879I
b = 1.32942 0.64140I
2.63587 9.48987I 0. + 7.65628I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.433922 + 0.813375I
a = 0.340896 0.426596I
b = 1.261610 0.534848I
2.67007 + 5.91475I 0. 7.38929I
u = 0.433922 0.813375I
a = 0.340896 + 0.426596I
b = 1.261610 + 0.534848I
2.67007 5.91475I 0. + 7.38929I
u = 0.554849 + 0.709779I
a = 0.217443 + 0.777212I
b = 1.072060 + 0.149681I
1.20946 + 2.41405I 0. 4.08041I
u = 0.554849 0.709779I
a = 0.217443 0.777212I
b = 1.072060 0.149681I
1.20946 2.41405I 0. + 4.08041I
u = 0.455576 + 0.714744I
a = 0.149975 + 0.576727I
b = 1.027580 + 0.397314I
1.05950 + 2.27821I 0. 2.78604I
u = 0.455576 0.714744I
a = 0.149975 0.576727I
b = 1.027580 0.397314I
1.05950 2.27821I 0. + 2.78604I
u = 0.280767 + 0.714209I
a = 0.082115 0.233998I
b = 0.850866 0.798684I
4.99265 + 1.07686I 5.54603 2.94632I
u = 0.280767 0.714209I
a = 0.082115 + 0.233998I
b = 0.850866 + 0.798684I
4.99265 1.07686I 5.54603 + 2.94632I
u = 1.249920 + 0.188145I
a = 1.31747 0.73074I
b = 0.601101 + 0.517228I
2.25469 0.67746I 0
u = 1.249920 0.188145I
a = 1.31747 + 0.73074I
b = 0.601101 0.517228I
2.25469 + 0.67746I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.309040 + 0.052760I
a = 0.419594 1.100620I
b = 0.36327 + 1.84192I
2.89086 4.92095I 0
u = 1.309040 0.052760I
a = 0.419594 + 1.100620I
b = 0.36327 1.84192I
2.89086 + 4.92095I 0
u = 1.349770 + 0.028214I
a = 0.209932 + 0.804803I
b = 0.18196 1.58583I
3.20353 1.98495I 0
u = 1.349770 0.028214I
a = 0.209932 0.804803I
b = 0.18196 + 1.58583I
3.20353 + 1.98495I 0
u = 1.384270 + 0.010881I
a = 1.89998 + 0.04672I
b = 1.086340 0.036544I
3.24184 + 0.00358I 0
u = 1.384270 0.010881I
a = 1.89998 0.04672I
b = 1.086340 + 0.036544I
3.24184 0.00358I 0
u = 1.41369 + 0.09323I
a = 2.01362 0.40791I
b = 1.167340 + 0.325383I
5.17639 + 3.49609I 0
u = 1.41369 0.09323I
a = 2.01362 + 0.40791I
b = 1.167340 0.325383I
5.17639 3.49609I 0
u = 1.42461 + 0.12859I
a = 2.04808 + 0.56618I
b = 1.187440 0.454960I
0.01422 + 7.04483I 0
u = 1.42461 0.12859I
a = 2.04808 0.56618I
b = 1.187440 + 0.454960I
0.01422 7.04483I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.43980 + 0.26155I
a = 1.64867 0.07993I
b = 1.43587 + 0.98145I
0.57753 4.59375I 0
u = 1.43980 0.26155I
a = 1.64867 + 0.07993I
b = 1.43587 0.98145I
0.57753 + 4.59375I 0
u = 0.094833 + 0.506795I
a = 1.277970 + 0.040231I
b = 0.118381 1.080780I
6.40428 + 3.28310I 8.64938 3.46229I
u = 0.094833 0.506795I
a = 1.277970 0.040231I
b = 0.118381 + 1.080780I
6.40428 3.28310I 8.64938 + 3.46229I
u = 1.49730 + 0.26665I
a = 1.66735 0.24380I
b = 1.46502 0.70007I
7.38726 5.90070I 0
u = 1.49730 0.26665I
a = 1.66735 + 0.24380I
b = 1.46502 + 0.70007I
7.38726 + 5.90070I 0
u = 1.49777 + 0.31809I
a = 1.95330 0.24247I
b = 1.71613 0.71417I
3.5199 13.7301I 0
u = 1.49777 0.31809I
a = 1.95330 + 0.24247I
b = 1.71613 + 0.71417I
3.5199 + 13.7301I 0
u = 1.50330 + 0.29927I
a = 1.85081 + 0.27564I
b = 1.62759 + 0.68002I
8.94669 9.97082I 0
u = 1.50330 0.29927I
a = 1.85081 0.27564I
b = 1.62759 0.68002I
8.94669 + 9.97082I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.297732 + 0.359699I
a = 2.02123 0.17904I
b = 0.728284 + 0.956131I
5.56278 5.20660I 8.08747 + 4.37223I
u = 0.297732 0.359699I
a = 2.02123 + 0.17904I
b = 0.728284 0.956131I
5.56278 + 5.20660I 8.08747 4.37223I
u = 1.52827 + 0.22236I
a = 1.40930 0.42475I
b = 1.244310 0.531664I
8.05943 5.77245I 0
u = 1.52827 0.22236I
a = 1.40930 + 0.42475I
b = 1.244310 + 0.531664I
8.05943 + 5.77245I 0
u = 1.53880 + 0.17846I
a = 1.142980 + 0.488982I
b = 1.010830 + 0.467594I
10.80810 1.96242I 0
u = 1.53880 0.17846I
a = 1.142980 0.488982I
b = 1.010830 0.467594I
10.80810 + 1.96242I 0
u = 1.54665 + 0.14104I
a = 0.909678 0.537410I
b = 0.805465 0.419819I
6.20214 + 1.77875I 0
u = 1.54665 0.14104I
a = 0.909678 + 0.537410I
b = 0.805465 + 0.419819I
6.20214 1.77875I 0
u = 0.234258 + 0.285587I
a = 2.09531 0.08804I
b = 0.631451 0.724461I
0.17010 2.09238I 3.71444 + 4.57317I
u = 0.234258 0.285587I
a = 2.09531 + 0.08804I
b = 0.631451 + 0.724461I
0.17010 + 2.09238I 3.71444 4.57317I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.025576 + 0.363456I
a = 1.41418 + 0.47907I
b = 0.134953 + 0.733098I
0.824240 + 0.967983I 5.68123 4.85193I
u = 0.025576 0.363456I
a = 1.41418 0.47907I
b = 0.134953 0.733098I
0.824240 0.967983I 5.68123 + 4.85193I
u = 0.260469
a = 2.68640
b = 0.794640
2.04678 5.78300
10
II. I
u
2
= hb + a, a
5
a
4
+ 2a
3
a
2
+ a 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
5
=
1
0
a
4
=
1
1
a
1
=
1
0
a
3
=
0
1
a
9
=
a
a
a
8
=
0
a
a
7
=
0
a
a
11
=
a
2
1
a
2
a
6
=
a
4
+ a
2
+ 1
a
4
a
10
=
a
2
1
a
4
a
10
=
a
2
1
a
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = a
4
4a
3
+ 2a
2
5a + 2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
7
u
5
c
3
, c
4
(u + 1)
5
c
5
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
6
u
5
u
4
2u
3
+ u
2
+ u + 1
c
8
, c
11
u
5
u
4
+ 2u
3
u
2
+ u 1
c
9
, c
10
u
5
+ u
4
2u
3
u
2
+ u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
(y 1)
5
c
2
, c
7
y
5
c
5
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
6
, c
9
, c
10
y
5
5y
4
+ 8y
3
3y
2
y 1
c
8
, c
11
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.339110 + 0.822375I
b = 0.339110 0.822375I
1.31583 + 1.53058I 0.02714 4.76366I
u = 1.00000
a = 0.339110 0.822375I
b = 0.339110 + 0.822375I
1.31583 1.53058I 0.02714 + 4.76366I
u = 1.00000
a = 0.766826
b = 0.766826
0.756147 2.80750
u = 1.00000
a = 0.455697 + 1.200150I
b = 0.455697 1.200150I
4.22763 4.40083I 4.43089 + 2.80751I
u = 1.00000
a = 0.455697 1.200150I
b = 0.455697 + 1.200150I
4.22763 + 4.40083I 4.43089 2.80751I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
53
6u
52
+ ··· + 5u 1)
c
2
, c
7
u
5
(u
53
+ u
52
+ ··· + 32u 32)
c
3
, c
4
((u + 1)
5
)(u
53
6u
52
+ ··· + 5u 1)
c
5
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)(u
53
+ 6u
52
+ ··· + 5u + 1)
c
6
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
53
2u
52
+ ··· u 1)
c
8
(u
5
u
4
+ 2u
3
u
2
+ u 1)(u
53
+ 2u
52
+ ··· 353u 505)
c
9
, c
10
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
53
2u
52
+ ··· u 1)
c
11
(u
5
u
4
+ 2u
3
u
2
+ u 1)(u
53
12u
52
+ ··· + 577u 73)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
((y 1)
5
)(y
53
52y
52
+ ··· 3y 1)
c
2
, c
7
y
5
(y
53
+ 33y
52
+ ··· 3584y 1024)
c
5
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
53
+ 54y
51
+ ··· + 3y 1)
c
6
, c
9
, c
10
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
53
48y
52
+ ··· 5y 1)
c
8
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
53
24y
52
+ ··· 2730661y 255025)
c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
53
+ 12y
52
+ ··· 67257y 5329)
16