11a
258
(K11a
258
)
A knot diagram
1
Linearized knot diagam
4 8 1 2 11 10 3 5 7 6 9
Solving Sequence
2,8 3,5
9 4 1 7 10 6 11
c
2
c
8
c
4
c
1
c
7
c
9
c
6
c
11
c
3
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h4.93541 × 10
32
u
40
+ 2.04760 × 10
32
u
39
+ ··· + 1.23008 × 10
33
b 8.08350 × 10
33
,
1.21871 × 10
33
u
40
1.85520 × 10
33
u
39
+ ··· + 2.46016 × 10
33
a + 1.04083 × 10
34
, u
41
u
40
+ ··· + 8u 16i
I
v
1
= ha, b 1, v
4
v
3
+ v
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h4.94 × 10
32
u
40
+ 2.05 × 10
32
u
39
+ · · · + 1.23 × 10
33
b 8.08 × 10
33
, 1.22 ×
10
33
u
40
1.86×10
33
u
39
+· · ·+2.46×10
33
a+1.04×10
34
, u
41
u
40
+· · ·+8u16i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
0.495378u
40
+ 0.754100u
39
+ ··· + 8.36593u 4.23073
0.401227u
40
0.166461u
39
+ ··· + 3.25878u + 6.57153
a
9
=
0.00964588u
40
+ 0.868205u
39
+ ··· + 3.33085u 12.4271
0.279000u
40
+ 0.570378u
39
+ ··· + 6.14986u 4.36198
a
4
=
0.896605u
40
+ 0.587639u
39
+ ··· + 11.6247u + 2.34080
0.401227u
40
0.166461u
39
+ ··· + 3.25878u + 6.57153
a
1
=
0.896605u
40
+ 0.587639u
39
+ ··· + 11.6247u + 2.34080
0.623981u
40
+ 0.594016u
39
+ ··· + 8.61517u 1.62808
a
7
=
u
u
3
+ u
a
10
=
0.181324u
40
+ 0.551451u
39
+ ··· + 0.442667u 9.89004
0.175096u
40
+ 0.493041u
39
+ ··· + 5.13059u 4.57783
a
6
=
0.295942u
40
+ 0.237376u
39
+ ··· + 3.40554u + 0.455300
0.311321u
40
0.0909921u
39
+ ··· + 2.02971u + 5.46031
a
11
=
0.248888u
40
0.460318u
39
+ ··· 0.398174u + 9.13315
0.0375077u
40
0.244171u
39
+ ··· 1.75912u + 2.99026
a
11
=
0.248888u
40
0.460318u
39
+ ··· 0.398174u + 9.13315
0.0375077u
40
0.244171u
39
+ ··· 1.75912u + 2.99026
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.312617u
40
+ 1.81495u
39
+ ··· + 9.58739u 33.8289
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
41
5u
40
+ ··· 3u + 1
c
2
, c
7
u
41
+ u
40
+ ··· + 8u + 16
c
5
, c
6
, c
9
c
10
u
41
+ 2u
40
+ ··· 3u 1
c
8
u
41
+ 2u
40
+ ··· 20u 100
c
11
u
41
12u
40
+ ··· + 549u 131
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
y
41
41y
40
+ ··· 13y 1
c
2
, c
7
y
41
+ 27y
40
+ ··· 960y 256
c
5
, c
6
, c
9
c
10
y
41
+ 48y
40
+ ··· 7y 1
c
8
y
41
24y
40
+ ··· 163800y 10000
c
11
y
41
12y
40
+ ··· + 112237y 17161
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.04360
a = 0.918815
b = 1.34522
3.09864 0.703580
u = 0.280650 + 1.032300I
a = 0.113218 0.945326I
b = 0.451556 + 0.680540I
0.98467 2.16041I 0.30534 + 3.36601I
u = 0.280650 1.032300I
a = 0.113218 + 0.945326I
b = 0.451556 0.680540I
0.98467 + 2.16041I 0.30534 3.36601I
u = 0.636469 + 0.676356I
a = 0.663046 + 0.390386I
b = 1.123470 0.320823I
8.62893 + 1.18234I 6.12242 + 0.09680I
u = 0.636469 0.676356I
a = 0.663046 0.390386I
b = 1.123470 + 0.320823I
8.62893 1.18234I 6.12242 0.09680I
u = 0.067485 + 1.087720I
a = 1.345840 0.268602I
b = 1.365970 + 0.031939I
3.50700 + 1.95785I 4.15911 3.79195I
u = 0.067485 1.087720I
a = 1.345840 + 0.268602I
b = 1.365970 0.031939I
3.50700 1.95785I 4.15911 + 3.79195I
u = 0.053492 + 1.097010I
a = 0.119204 + 0.861224I
b = 0.644526 0.652721I
3.46087 0.57126I 6.38744 + 1.36032I
u = 0.053492 1.097010I
a = 0.119204 0.861224I
b = 0.644526 + 0.652721I
3.46087 + 0.57126I 6.38744 1.36032I
u = 0.231068 + 1.076220I
a = 1.18409 + 0.88552I
b = 1.359660 0.109695I
9.84300 4.44580I 7.49047 + 4.00982I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.231068 1.076220I
a = 1.18409 0.88552I
b = 1.359660 + 0.109695I
9.84300 + 4.44580I 7.49047 4.00982I
u = 0.575963 + 0.681143I
a = 0.654397 + 0.985833I
b = 0.064994 0.588385I
5.44874 + 2.20051I 0.49288 3.58387I
u = 0.575963 0.681143I
a = 0.654397 0.985833I
b = 0.064994 + 0.588385I
5.44874 2.20051I 0.49288 + 3.58387I
u = 1.179440 + 0.158362I
a = 0.994717 + 0.088396I
b = 1.409360 0.075417I
5.20973 + 3.10308I 5.68137 4.55677I
u = 1.179440 0.158362I
a = 0.994717 0.088396I
b = 1.409360 + 0.075417I
5.20973 3.10308I 5.68137 + 4.55677I
u = 0.353950 + 1.159500I
a = 0.079020 + 1.089230I
b = 0.450262 0.797995I
2.77750 + 5.51756I 3.79773 7.77564I
u = 0.353950 1.159500I
a = 0.079020 1.089230I
b = 0.450262 + 0.797995I
2.77750 5.51756I 3.79773 + 7.77564I
u = 0.005676 + 1.227250I
a = 0.228021 0.942171I
b = 0.720117 + 0.732589I
11.55890 + 2.26622I 7.69126 0.18572I
u = 0.005676 1.227250I
a = 0.228021 + 0.942171I
b = 0.720117 0.732589I
11.55890 2.26622I 7.69126 + 0.18572I
u = 0.383325 + 1.244490I
a = 0.043543 1.163710I
b = 0.463101 + 0.864387I
10.75100 7.67961I 5.88345 + 5.74816I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.383325 1.244490I
a = 0.043543 + 1.163710I
b = 0.463101 0.864387I
10.75100 + 7.67961I 5.88345 5.74816I
u = 1.287610 + 0.202232I
a = 1.055360 0.112449I
b = 1.46107 + 0.09654I
13.2971 5.0740I 7.49177 + 2.86395I
u = 1.287610 0.202232I
a = 1.055360 + 0.112449I
b = 1.46107 0.09654I
13.2971 + 5.0740I 7.49177 2.86395I
u = 0.637500 + 0.135734I
a = 1.71237 0.80495I
b = 0.363345 + 0.258087I
7.29387 + 3.70140I 0.13489 3.24211I
u = 0.637500 0.135734I
a = 1.71237 + 0.80495I
b = 0.363345 0.258087I
7.29387 3.70140I 0.13489 + 3.24211I
u = 0.442927 + 0.446451I
a = 0.885936 0.663779I
b = 0.002285 + 0.351914I
0.739118 0.963294I 5.38374 + 5.24951I
u = 0.442927 0.446451I
a = 0.885936 + 0.663779I
b = 0.002285 0.351914I
0.739118 + 0.963294I 5.38374 5.24951I
u = 0.545126 + 0.215241I
a = 1.37573 + 0.63189I
b = 0.218730 0.254700I
0.06188 1.89506I 3.00107 + 4.96508I
u = 0.545126 0.215241I
a = 1.37573 0.63189I
b = 0.218730 + 0.254700I
0.06188 + 1.89506I 3.00107 4.96508I
u = 0.332351 + 0.473594I
a = 0.483789 0.209918I
b = 0.984199 + 0.167639I
1.84031 0.69258I 6.89864 1.74884I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.332351 0.473594I
a = 0.483789 + 0.209918I
b = 0.984199 0.167639I
1.84031 + 0.69258I 6.89864 + 1.74884I
u = 0.52227 + 1.35643I
a = 0.110639 1.064090I
b = 1.49556 + 0.25090I
7.31234 + 5.60210I 0
u = 0.52227 1.35643I
a = 0.110639 + 1.064090I
b = 1.49556 0.25090I
7.31234 5.60210I 0
u = 0.41034 + 1.42300I
a = 0.140257 + 0.816586I
b = 1.52685 0.19609I
10.55130 2.41180I 0
u = 0.41034 1.42300I
a = 0.140257 0.816586I
b = 1.52685 + 0.19609I
10.55130 + 2.41180I 0
u = 0.60199 + 1.38207I
a = 0.024627 + 1.133790I
b = 1.50901 0.28951I
9.13999 9.48739I 0
u = 0.60199 1.38207I
a = 0.024627 1.133790I
b = 1.50901 + 0.28951I
9.13999 + 9.48739I 0
u = 0.65669 + 1.41457I
a = 0.127888 1.155240I
b = 1.52575 + 0.31574I
17.2037 + 11.9877I 0
u = 0.65669 1.41457I
a = 0.127888 + 1.155240I
b = 1.52575 0.31574I
17.2037 11.9877I 0
u = 0.38128 + 1.53983I
a = 0.017651 0.667778I
b = 1.58265 + 0.18117I
19.3092 + 0.9583I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.38128 1.53983I
a = 0.017651 + 0.667778I
b = 1.58265 0.18117I
19.3092 0.9583I 0
9
II. I
v
1
= ha, b 1, v
4
v
3
+ v
2
+ 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
v
0
a
3
=
1
0
a
5
=
0
1
a
9
=
v
v
a
4
=
1
1
a
1
=
0
1
a
7
=
v
0
a
10
=
v
3
+ v
v
a
6
=
v
3
v
2
1
v
3
a
11
=
v
2
v
2
1
a
11
=
v
2
v
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v
2
5v 1
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
7
u
4
c
3
, c
4
(u + 1)
4
c
5
, c
6
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
8
, c
11
u
4
u
3
+ u
2
+ 1
c
9
, c
10
u
4
u
3
+ 3u
2
2u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
(y 1)
4
c
2
, c
7
y
4
c
5
, c
6
, c
9
c
10
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
8
, c
11
y
4
+ y
3
+ 3y
2
+ 2y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.351808 + 0.720342I
a = 0
b = 1.00000
1.43393 + 1.41510I 0.82145 5.62908I
v = 0.351808 0.720342I
a = 0
b = 1.00000
1.43393 1.41510I 0.82145 + 5.62908I
v = 0.851808 + 0.911292I
a = 0
b = 1.00000
8.43568 3.16396I 5.67855 + 1.65351I
v = 0.851808 0.911292I
a = 0
b = 1.00000
8.43568 + 3.16396I 5.67855 1.65351I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
41
5u
40
+ ··· 3u + 1)
c
2
, c
7
u
4
(u
41
+ u
40
+ ··· + 8u + 16)
c
3
, c
4
((u + 1)
4
)(u
41
5u
40
+ ··· 3u + 1)
c
5
, c
6
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
41
+ 2u
40
+ ··· 3u 1)
c
8
(u
4
u
3
+ u
2
+ 1)(u
41
+ 2u
40
+ ··· 20u 100)
c
9
, c
10
(u
4
u
3
+ 3u
2
2u + 1)(u
41
+ 2u
40
+ ··· 3u 1)
c
11
(u
4
u
3
+ u
2
+ 1)(u
41
12u
40
+ ··· + 549u 131)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
((y 1)
4
)(y
41
41y
40
+ ··· 13y 1)
c
2
, c
7
y
4
(y
41
+ 27y
40
+ ··· 960y 256)
c
5
, c
6
, c
9
c
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
41
+ 48y
40
+ ··· 7y 1)
c
8
(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
41
24y
40
+ ··· 163800y 10000)
c
11
(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
41
12y
40
+ ··· + 112237y 17161)
15