11a
259
(K11a
259
)
A knot diagram
1
Linearized knot diagam
4 7 1 2 10 9 3 11 5 6 8
Solving Sequence
5,10
6
2,11
4 1 3 9 7 8
c
5
c
10
c
4
c
1
c
3
c
9
c
6
c
8
c
2
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
43
+ u
42
+ ··· + b u, u
43
+ u
42
+ ··· + a 2, u
44
+ 2u
43
+ ··· 3u 1i
I
u
2
= hb + 1, u
3
+ a 2u + 1, u
5
+ u
4
2u
3
u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
43
+ u
42
+ · · · + b u, u
43
+ u
42
+ · · · + a 2, u
44
+ 2u
43
+ · · · 3u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
2
=
u
43
u
42
+ ··· + 6u + 2
u
43
u
42
+ ··· + 3u
2
+ u
a
11
=
u
u
3
+ u
a
4
=
2u
43
2u
42
+ ··· + 7u + 3
u
43
u
42
+ ··· + 11u
3
+ 2u
2
a
1
=
u
9
+ 4u
7
5u
5
+ 2u
3
u
u
11
+ 5u
9
8u
7
+ 3u
5
+ u
3
+ u
a
3
=
3u
43
3u
42
+ ··· + 6u + 3
u
43
u
42
+ ··· 17u
4
+ 6u
3
a
9
=
u
u
a
7
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
8
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
43
+ 4u
42
+ ··· + u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
44
6u
43
+ ··· + 3u 1
c
2
, c
7
u
44
u
43
+ ··· + 32u + 32
c
5
, c
9
, c
10
u
44
+ 2u
43
+ ··· 3u 1
c
6
u
44
6u
43
+ ··· + 175u + 53
c
8
, c
11
u
44
+ 6u
43
+ ··· 57u 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
y
44
46y
43
+ ··· 17y + 1
c
2
, c
7
y
44
33y
43
+ ··· 512y + 1024
c
5
, c
9
, c
10
y
44
42y
43
+ ··· + y + 1
c
6
y
44
18y
43
+ ··· 41755y + 2809
c
8
, c
11
y
44
+ 42y
43
+ ··· 3555y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.899130 + 0.176754I
a = 0.521391 + 0.292332I
b = 1.43714 + 0.02392I
6.64112 0.04136I 14.06391 0.57797I
u = 0.899130 0.176754I
a = 0.521391 0.292332I
b = 1.43714 0.02392I
6.64112 + 0.04136I 14.06391 + 0.57797I
u = 0.425086 + 0.710647I
a = 1.05109 1.91783I
b = 1.56049 + 0.28855I
11.4356 8.9717I 12.8397 + 6.3159I
u = 0.425086 0.710647I
a = 1.05109 + 1.91783I
b = 1.56049 0.28855I
11.4356 + 8.9717I 12.8397 6.3159I
u = 0.553555 + 0.613338I
a = 1.044040 0.369018I
b = 1.57148 0.25916I
11.90460 + 4.53656I 13.93261 0.49755I
u = 0.553555 0.613338I
a = 1.044040 + 0.369018I
b = 1.57148 + 0.25916I
11.90460 4.53656I 13.93261 + 0.49755I
u = 0.460055 + 0.640339I
a = 1.73542 1.22014I
b = 1.47584 + 0.02352I
6.79823 + 2.11103I 12.35870 3.20933I
u = 0.460055 0.640339I
a = 1.73542 + 1.22014I
b = 1.47584 0.02352I
6.79823 2.11103I 12.35870 + 3.20933I
u = 0.433137 + 0.657379I
a = 0.966620 + 0.943319I
b = 0.550396 0.837192I
4.52260 4.83043I 11.16325 + 6.23604I
u = 0.433137 0.657379I
a = 0.966620 0.943319I
b = 0.550396 + 0.837192I
4.52260 + 4.83043I 11.16325 6.23604I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.479430 + 0.610552I
a = 0.236070 + 0.053486I
b = 0.609155 + 0.800806I
4.71947 + 0.64919I 11.99618 + 0.22434I
u = 0.479430 0.610552I
a = 0.236070 0.053486I
b = 0.609155 0.800806I
4.71947 0.64919I 11.99618 0.22434I
u = 1.233270 + 0.075682I
a = 0.824540 + 0.353873I
b = 0.058722 0.367772I
2.14292 + 0.55015I 5.79202 + 0.I
u = 1.233270 0.075682I
a = 0.824540 0.353873I
b = 0.058722 + 0.367772I
2.14292 0.55015I 5.79202 + 0.I
u = 0.156977 + 0.697187I
a = 0.81527 + 1.27945I
b = 1.42769 0.10914I
4.26770 + 3.54538I 9.88379 4.33460I
u = 0.156977 0.697187I
a = 0.81527 1.27945I
b = 1.42769 + 0.10914I
4.26770 3.54538I 9.88379 + 4.33460I
u = 1.315480 + 0.178595I
a = 0.371113 + 0.634542I
b = 0.262321 0.630465I
3.43627 4.29473I 0
u = 1.315480 0.178595I
a = 0.371113 0.634542I
b = 0.262321 + 0.630465I
3.43627 + 4.29473I 0
u = 0.359435 + 0.567287I
a = 0.738087 + 0.401907I
b = 0.328694 0.089361I
0.76310 + 1.71420I 4.36493 4.23791I
u = 0.359435 0.567287I
a = 0.738087 0.401907I
b = 0.328694 + 0.089361I
0.76310 1.71420I 4.36493 + 4.23791I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.334190 + 0.073613I
a = 0.545890 0.301912I
b = 0.878617 + 0.388577I
5.28913 0.51604I 0
u = 1.334190 0.073613I
a = 0.545890 + 0.301912I
b = 0.878617 0.388577I
5.28913 + 0.51604I 0
u = 1.323300 + 0.265801I
a = 1.05667 1.60928I
b = 1.43422 + 0.16711I
8.90196 7.03042I 0
u = 1.323300 0.265801I
a = 1.05667 + 1.60928I
b = 1.43422 0.16711I
8.90196 + 7.03042I 0
u = 1.345120 + 0.133766I
a = 2.19486 1.55848I
b = 1.237690 + 0.186516I
6.11126 + 2.71120I 0
u = 1.345120 0.133766I
a = 2.19486 + 1.55848I
b = 1.237690 0.186516I
6.11126 2.71120I 0
u = 0.107997 + 0.549878I
a = 0.469723 1.325100I
b = 0.192197 + 0.469108I
0.99729 + 1.64755I 2.31020 6.18875I
u = 0.107997 0.549878I
a = 0.469723 + 1.325100I
b = 0.192197 0.469108I
0.99729 1.64755I 2.31020 + 6.18875I
u = 1.43477 + 0.21962I
a = 1.086810 0.327306I
b = 0.432601 + 0.117164I
6.51912 4.63399I 0
u = 1.43477 0.21962I
a = 1.086810 + 0.327306I
b = 0.432601 0.117164I
6.51912 + 4.63399I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.46361
a = 2.48778
b = 1.56570
13.6319 0
u = 1.47141 + 0.23987I
a = 1.43868 0.10244I
b = 0.545081 + 0.886664I
10.66990 + 8.11106I 0
u = 1.47141 0.23987I
a = 1.43868 + 0.10244I
b = 0.545081 0.886664I
10.66990 8.11106I 0
u = 1.47725 + 0.21569I
a = 0.386925 0.779700I
b = 0.663066 0.832758I
11.03430 + 2.36395I 0
u = 1.47725 0.21569I
a = 0.386925 + 0.779700I
b = 0.663066 + 0.832758I
11.03430 2.36395I 0
u = 1.47753 + 0.22911I
a = 2.97141 + 1.15676I
b = 1.50758 0.04579I
13.05820 5.28645I 0
u = 1.47753 0.22911I
a = 2.97141 1.15676I
b = 1.50758 + 0.04579I
13.05820 + 5.28645I 0
u = 1.47671 + 0.26167I
a = 2.44784 + 1.62296I
b = 1.56869 0.31082I
17.5761 + 12.5201I 0
u = 1.47671 0.26167I
a = 2.44784 1.62296I
b = 1.56869 + 0.31082I
17.5761 12.5201I 0
u = 1.50093 + 0.19538I
a = 2.44900 + 0.53318I
b = 1.60536 + 0.25067I
18.5896 1.6346I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.50093 0.19538I
a = 2.44900 0.53318I
b = 1.60536 0.25067I
18.5896 + 1.6346I 0
u = 0.132479 + 0.398765I
a = 0.14251 + 2.47920I
b = 1.082710 0.136687I
1.44721 0.71558I 5.57948 1.23300I
u = 0.132479 0.398765I
a = 0.14251 2.47920I
b = 1.082710 + 0.136687I
1.44721 + 0.71558I 5.57948 + 1.23300I
u = 0.304939
a = 0.799083
b = 0.406553
0.758185 13.9250
9
II. I
u
2
= hb + 1, u
3
+ a 2u + 1, u
5
+ u
4
2u
3
u
2
+ u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
2
=
u
3
+ 2u 1
1
a
11
=
u
u
3
+ u
a
4
=
u
3
+ 2u
1
a
1
=
1
0
a
3
=
u
3
+ 2u 1
1
a
9
=
u
u
a
7
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
8
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
8
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
+ u
2
+ 8u 15
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
7
u
5
c
3
, c
4
(u + 1)
5
c
5
u
5
+ u
4
2u
3
u
2
+ u 1
c
6
u
5
3u
4
+ 4u
3
u
2
u + 1
c
8
u
5
u
4
+ 2u
3
u
2
+ u 1
c
9
, c
10
u
5
u
4
2u
3
+ u
2
+ u + 1
c
11
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
(y 1)
5
c
2
, c
7
y
5
c
5
, c
9
, c
10
y
5
5y
4
+ 8y
3
3y
2
y 1
c
6
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
8
, c
11
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.370286
b = 1.00000
4.04602 9.19250
u = 0.309916 + 0.549911I
a = 0.128779 + 1.107660I
b = 1.00000
1.97403 1.53058I 11.97286 + 4.76366I
u = 0.309916 0.549911I
a = 0.128779 1.107660I
b = 1.00000
1.97403 + 1.53058I 11.97286 4.76366I
u = 1.41878 + 0.21917I
a = 1.18608 0.87465I
b = 1.00000
7.51750 + 4.40083I 16.4309 2.8075I
u = 1.41878 0.21917I
a = 1.18608 + 0.87465I
b = 1.00000
7.51750 4.40083I 16.4309 + 2.8075I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
44
6u
43
+ ··· + 3u 1)
c
2
, c
7
u
5
(u
44
u
43
+ ··· + 32u + 32)
c
3
, c
4
((u + 1)
5
)(u
44
6u
43
+ ··· + 3u 1)
c
5
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
44
+ 2u
43
+ ··· 3u 1)
c
6
(u
5
3u
4
+ 4u
3
u
2
u + 1)(u
44
6u
43
+ ··· + 175u + 53)
c
8
(u
5
u
4
+ 2u
3
u
2
+ u 1)(u
44
+ 6u
43
+ ··· 57u 9)
c
9
, c
10
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
44
+ 2u
43
+ ··· 3u 1)
c
11
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
44
+ 6u
43
+ ··· 57u 9)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
((y 1)
5
)(y
44
46y
43
+ ··· 17y + 1)
c
2
, c
7
y
5
(y
44
33y
43
+ ··· 512y + 1024)
c
5
, c
9
, c
10
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
44
42y
43
+ ··· + y + 1)
c
6
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
44
18y
43
+ ··· 41755y + 2809)
c
8
, c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
44
+ 42y
43
+ ··· 3555y + 81)
15