11a
260
(K11a
260
)
A knot diagram
1
Linearized knot diagam
4 7 1 2 10 9 3 11 6 5 8
Solving Sequence
5,10
6
2,11
4 1 3 9 7 8
c
5
c
10
c
4
c
1
c
3
c
9
c
6
c
8
c
2
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
34
u
33
+ ··· + b + 1, u
37
+ 2u
36
+ ··· + a 1, u
38
2u
37
+ ··· + u + 1i
I
u
2
= hb + 1, u
3
+ u
2
+ a 3u + 1, u
4
u
3
+ 3u
2
2u + 1i
* 2 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
34
u
33
+· · · +b + 1, u
37
+2u
36
+· · · +a 1, u
38
2u
37
+· · · +u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
2
=
u
37
2u
36
+ ··· + 5u + 1
u
34
+ u
33
+ ··· u 1
a
11
=
u
u
a
4
=
u
37
2u
36
+ ··· + 4u + 1
u
34
+ u
33
+ ··· 2u 1
a
1
=
u
9
4u
7
3u
5
+ 2u
3
u
u
9
+ 5u
7
+ 7u
5
+ 2u
3
+ u
a
3
=
u
37
2u
36
+ ··· + 8u
2
+ u
u
35
u
34
+ ··· 2u 1
a
9
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
u
5
2u
3
+ u
u
5
+ 3u
3
+ u
a
8
=
u
5
2u
3
+ u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
37
+ 2u
36
+ ··· + 8u 5
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
38
5u
37
+ ··· + 3u 1
c
2
, c
7
u
38
u
37
+ ··· 8u 16
c
5
, c
6
, c
9
c
10
u
38
2u
37
+ ··· + u + 1
c
8
, c
11
u
38
+ 6u
37
+ ··· + 93u + 19
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
y
38
39y
37
+ ··· 23y + 1
c
2
, c
7
y
38
27y
37
+ ··· 64y + 256
c
5
, c
6
, c
9
c
10
y
38
+ 42y
37
+ ··· + 3y + 1
c
8
, c
11
y
38
+ 30y
37
+ ··· 13361y + 361
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.331390 + 0.800737I
a = 1.08027 + 1.42658I
b = 1.43349 0.08457I
4.40003 + 3.17772I 9.24672 4.52124I
u = 0.331390 0.800737I
a = 1.08027 1.42658I
b = 1.43349 + 0.08457I
4.40003 3.17772I 9.24672 + 4.52124I
u = 0.632534 + 0.587679I
a = 0.72801 2.04747I
b = 1.54993 + 0.28338I
10.96810 8.77029I 12.03440 + 6.55590I
u = 0.632534 0.587679I
a = 0.72801 + 2.04747I
b = 1.54993 0.28338I
10.96810 + 8.77029I 12.03440 6.55590I
u = 0.595823 + 0.532540I
a = 0.88414 + 1.11716I
b = 0.536492 0.820187I
4.14241 4.72017I 10.42521 + 6.54233I
u = 0.595823 0.532540I
a = 0.88414 1.11716I
b = 0.536492 + 0.820187I
4.14241 + 4.72017I 10.42521 6.54233I
u = 0.607436 + 0.495757I
a = 1.52782 1.27199I
b = 1.46016 + 0.02727I
6.41754 + 2.06753I 11.71336 3.34688I
u = 0.607436 0.495757I
a = 1.52782 + 1.27199I
b = 1.46016 0.02727I
6.41754 2.06753I 11.71336 + 3.34688I
u = 0.670848 + 0.404516I
a = 0.817417 0.255182I
b = 1.56238 0.24922I
11.51120 + 4.37869I 13.39153 0.68267I
u = 0.670848 0.404516I
a = 0.817417 + 0.255182I
b = 1.56238 + 0.24922I
11.51120 4.37869I 13.39153 + 0.68267I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.603069 + 0.453875I
a = 0.323964 0.069070I
b = 0.604946 + 0.776470I
4.37423 + 0.63202I 11.49824 + 0.19498I
u = 0.603069 0.453875I
a = 0.323964 + 0.069070I
b = 0.604946 0.776470I
4.37423 0.63202I 11.49824 0.19498I
u = 0.458515 + 0.496866I
a = 0.735714 + 0.425841I
b = 0.295812 0.100934I
0.58212 + 1.61412I 3.79024 4.58395I
u = 0.458515 0.496866I
a = 0.735714 0.425841I
b = 0.295812 + 0.100934I
0.58212 1.61412I 3.79024 + 4.58395I
u = 0.166029 + 0.605237I
a = 0.54999 1.37311I
b = 0.197084 + 0.433714I
0.92221 + 1.54825I 1.51822 6.63292I
u = 0.166029 0.605237I
a = 0.54999 + 1.37311I
b = 0.197084 0.433714I
0.92221 1.54825I 1.51822 + 6.63292I
u = 0.599131
a = 0.814584
b = 1.47212
6.92604 14.5410
u = 0.19248 + 1.43542I
a = 0.557197 0.105570I
b = 1.57803 0.19884I
5.62113 + 1.29652I 0
u = 0.19248 1.43542I
a = 0.557197 + 0.105570I
b = 1.57803 + 0.19884I
5.62113 1.29652I 0
u = 0.16452 + 1.49701I
a = 0.870156 0.798495I
b = 0.700266 + 0.746539I
2.00271 2.06597I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.16452 1.49701I
a = 0.870156 + 0.798495I
b = 0.700266 0.746539I
2.00271 + 2.06597I 0
u = 0.02138 + 1.51704I
a = 0.79272 + 1.61255I
b = 1.125240 0.315445I
5.07701 1.17536I 0
u = 0.02138 1.51704I
a = 0.79272 1.61255I
b = 1.125240 + 0.315445I
5.07701 + 1.17536I 0
u = 0.17777 + 1.51557I
a = 0.154126 1.301400I
b = 1.46693 + 0.08311I
0.19906 + 4.87289I 0
u = 0.17777 1.51557I
a = 0.154126 + 1.301400I
b = 1.46693 0.08311I
0.19906 4.87289I 0
u = 0.12286 + 1.53872I
a = 0.329499 + 0.682733I
b = 0.371714 0.234405I
6.26465 + 3.65085I 0
u = 0.12286 1.53872I
a = 0.329499 0.682733I
b = 0.371714 + 0.234405I
6.26465 3.65085I 0
u = 0.17843 + 1.53412I
a = 0.32146 + 1.73410I
b = 0.481260 0.864252I
2.69845 7.51312I 0
u = 0.17843 1.53412I
a = 0.32146 1.73410I
b = 0.481260 + 0.864252I
2.69845 + 7.51312I 0
u = 0.03636 + 1.55804I
a = 0.36918 1.51241I
b = 0.071818 + 0.599117I
8.24732 + 2.22241I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.03636 1.55804I
a = 0.36918 + 1.51241I
b = 0.071818 0.599117I
8.24732 2.22241I 0
u = 0.160891 + 0.403134I
a = 0.03733 + 2.61389I
b = 1.072260 0.128378I
1.45280 0.68265I 5.04350 1.82049I
u = 0.160891 0.403134I
a = 0.03733 2.61389I
b = 1.072260 + 0.128378I
1.45280 + 0.68265I 5.04350 + 1.82049I
u = 0.19856 + 1.55611I
a = 0.54782 2.02596I
b = 1.53547 + 0.31265I
3.85806 11.81890I 0
u = 0.19856 1.55611I
a = 0.54782 + 2.02596I
b = 1.53547 0.31265I
3.85806 + 11.81890I 0
u = 0.07622 + 1.60929I
a = 1.71521 + 1.01252I
b = 1.362500 0.126997I
3.79825 + 4.60582I 0
u = 0.07622 1.60929I
a = 1.71521 1.01252I
b = 1.362500 + 0.126997I
3.79825 4.60582I 0
u = 0.284804
a = 0.802881
b = 0.417854
0.765706 13.9120
8
II. I
u
2
= hb + 1, u
3
+ u
2
+ a 3u + 1, u
4
u
3
+ 3u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
2
=
u
3
u
2
+ 3u 1
1
a
11
=
u
u
a
4
=
u
3
u
2
+ 3u
1
a
1
=
1
0
a
3
=
u
3
u
2
+ 3u 1
1
a
9
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
3
u
2
+ 2u 1
a
8
=
u
2
+ 1
u
3
u
2
+ 2u 1
a
8
=
u
2
+ 1
u
3
u
2
+ 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
3
5u
2
+ 14u 16
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
7
u
4
c
3
, c
4
(u + 1)
4
c
5
, c
6
u
4
u
3
+ 3u
2
2u + 1
c
8
u
4
u
3
+ u
2
+ 1
c
9
, c
10
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
11
u
4
+ u
3
+ u
2
+ 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
(y 1)
4
c
2
, c
7
y
4
c
5
, c
6
, c
9
c
10
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
8
, c
11
y
4
+ y
3
+ 3y
2
+ 2y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.043315 + 1.227190I
b = 1.00000
1.85594 1.41510I 11.17855 + 5.62908I
u = 0.395123 0.506844I
a = 0.043315 1.227190I
b = 1.00000
1.85594 + 1.41510I 11.17855 5.62908I
u = 0.10488 + 1.55249I
a = 0.956685 + 0.641200I
b = 1.00000
5.14581 3.16396I 6.32145 + 1.65351I
u = 0.10488 1.55249I
a = 0.956685 0.641200I
b = 1.00000
5.14581 + 3.16396I 6.32145 1.65351I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
38
5u
37
+ ··· + 3u 1)
c
2
, c
7
u
4
(u
38
u
37
+ ··· 8u 16)
c
3
, c
4
((u + 1)
4
)(u
38
5u
37
+ ··· + 3u 1)
c
5
, c
6
(u
4
u
3
+ 3u
2
2u + 1)(u
38
2u
37
+ ··· + u + 1)
c
8
(u
4
u
3
+ u
2
+ 1)(u
38
+ 6u
37
+ ··· + 93u + 19)
c
9
, c
10
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
38
2u
37
+ ··· + u + 1)
c
11
(u
4
+ u
3
+ u
2
+ 1)(u
38
+ 6u
37
+ ··· + 93u + 19)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
((y 1)
4
)(y
38
39y
37
+ ··· 23y + 1)
c
2
, c
7
y
4
(y
38
27y
37
+ ··· 64y + 256)
c
5
, c
6
, c
9
c
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
38
+ 42y
37
+ ··· + 3y + 1)
c
8
, c
11
(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
38
+ 30y
37
+ ··· 13361y + 361)
14