9
15
(K9a
10
)
A knot diagram
1
Linearized knot diagam
5 4 8 2 7 9 3 1 6
Solving Sequence
4,8
3 2 5 1 9 7 6
c
3
c
2
c
4
c
1
c
8
c
7
c
6
c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
19
+ u
18
+ ··· u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 19 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
19
+ u
18
2u
17
3u
16
+ 6u
15
+ 8u
14
8u
13
13u
12
+ 11u
11
+
17u
10
10u
9
15u
8
+ 8u
7
+ 10u
6
4u
5
2u
4
+ 3u
3
u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
2
=
u
2
+ 1
u
2
a
5
=
u
4
u
2
+ 1
u
4
a
1
=
u
6
+ u
4
2u
2
+ 1
u
6
+ u
2
a
9
=
u
13
+ 2u
11
5u
9
+ 6u
7
6u
5
+ 4u
3
u
u
13
u
11
+ 3u
9
2u
7
+ 2u
5
u
3
+ u
a
7
=
u
u
3
+ u
a
6
=
u
8
u
6
+ 3u
4
2u
2
+ 1
u
10
2u
8
+ 3u
6
4u
4
+ u
2
a
6
=
u
8
u
6
+ 3u
4
2u
2
+ 1
u
10
2u
8
+ 3u
6
4u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
18
12u
16
4u
15
+ 32u
14
+ 8u
13
56u
12
20u
11
+ 72u
10
+
24u
9
76u
8
24u
7
+ 52u
6
+ 12u
5
24u
4
4u
3
+ 4u
2
8u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
19
5u
18
+ ··· + 2u 1
c
3
, c
7
u
19
u
18
+ ··· + u
2
1
c
5
, c
8
u
19
+ 7u
18
+ ··· + 2u 1
c
6
, c
9
u
19
+ u
18
+ ··· + 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
19
+ 19y
18
+ ··· + 10y 1
c
3
, c
7
y
19
5y
18
+ ··· + 2y 1
c
5
, c
8
y
19
+ 11y
18
+ ··· + 42y 1
c
6
, c
9
y
19
+ 7y
18
+ ··· + 2y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.964317 + 0.230449I
3.62212 0.16816I 10.16829 + 0.91431I
u = 0.964317 0.230449I
3.62212 + 0.16816I 10.16829 0.91431I
u = 0.978202 + 0.313897I
3.12958 + 5.52702I 8.42794 7.00248I
u = 0.978202 0.313897I
3.12958 5.52702I 8.42794 + 7.00248I
u = 0.820272 + 0.802988I
2.83381 + 1.53005I 4.20605 2.54963I
u = 0.820272 0.802988I
2.83381 1.53005I 4.20605 + 2.54963I
u = 0.809650 + 0.858173I
4.41408 + 3.71612I 1.80100 2.45937I
u = 0.809650 0.858173I
4.41408 3.71612I 1.80100 + 2.45937I
u = 0.635698 + 0.450549I
1.41106 + 1.72326I 0.18035 5.18112I
u = 0.635698 0.450549I
1.41106 1.72326I 0.18035 + 5.18112I
u = 0.949254 + 0.773576I
2.43770 + 4.39903I 4.93348 2.80289I
u = 0.949254 0.773576I
2.43770 4.39903I 4.93348 + 2.80289I
u = 0.903405 + 0.838368I
8.30762 3.11880I 1.58624 + 2.69239I
u = 0.903405 0.838368I
8.30762 + 3.11880I 1.58624 2.69239I
u = 0.975971 + 0.799116I
3.89635 9.88550I 2.86128 + 7.31129I
u = 0.975971 0.799116I
3.89635 + 9.88550I 2.86128 7.31129I
u = 0.667698
0.907373 11.4720
u = 0.103765 + 0.589022I
0.46836 2.32534I 2.27174 + 3.09456I
u = 0.103765 0.589022I
0.46836 + 2.32534I 2.27174 3.09456I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
19
5u
18
+ ··· + 2u 1
c
3
, c
7
u
19
u
18
+ ··· + u
2
1
c
5
, c
8
u
19
+ 7u
18
+ ··· + 2u 1
c
6
, c
9
u
19
+ u
18
+ ··· + 2u 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
19
+ 19y
18
+ ··· + 10y 1
c
3
, c
7
y
19
5y
18
+ ··· + 2y 1
c
5
, c
8
y
19
+ 11y
18
+ ··· + 42y 1
c
6
, c
9
y
19
+ 7y
18
+ ··· + 2y 1
7