11a
261
(K11a
261
)
A knot diagram
1
Linearized knot diagam
8 5 1 2 11 10 3 4 6 7 9
Solving Sequence
6,9
10 7 11
1,4
3 5 8 2
c
9
c
6
c
10
c
11
c
3
c
5
c
8
c
1
c
2
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.81838 × 10
20
u
64
+ 3.28868 × 10
20
u
63
+ ··· + 3.16246 × 10
20
b + 3.28868 × 10
20
,
2.56145 × 10
20
u
64
+ 1.23301 × 10
20
u
63
+ ··· + 4.74369 × 10
20
a + 1.66504 × 10
21
, u
65
2u
64
+ ··· 5u + 1i
I
u
2
= hb 1, a + 1, u 1i
* 2 irreducible components of dim
C
= 0, with total 66 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−5.82×10
20
u
64
+3.29×10
20
u
63
+· · ·+3.16×10
20
b+3.29×10
20
, 2.56×
10
20
u
64
+1.23×10
20
u
63
+· · ·+4.74×10
20
a+1.67×10
21
, u
65
2u
64
+· · ·5u+1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
7
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
4
2u
2
a
1
=
u
4
+ u
2
+ 1
u
4
2u
2
a
4
=
0.539970u
64
0.259927u
63
+ ··· 1.96576u 3.51002
1.83982u
64
1.03991u
63
+ ··· + 6.70956u 1.03991
a
3
=
0.573322u
64
0.227294u
63
+ ··· 0.674829u 3.39334
2.04123u
64
1.24062u
63
+ ··· + 7.59641u 1.24062
a
5
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
8
=
1.65099u
64
0.842590u
63
+ ··· + 10.1209u + 2.47153
2.24504u
64
+ 1.44254u
63
+ ··· 7.30269u + 1.44504
a
2
=
0.606671u
64
+ 0.193473u
63
+ ··· 0.0581858u + 3.37667
2.24028u
64
+ 1.44014u
63
+ ··· 7.57737u + 1.44014
a
2
=
0.606671u
64
+ 0.193473u
63
+ ··· 0.0581858u + 3.37667
2.24028u
64
+ 1.44014u
63
+ ··· 7.57737u + 1.44014
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1129105924074689745576
158123107034570359949
u
64
1258714178007543158198
158123107034570359949
u
63
+ ··· +
58838764609619796866
3364321426267454467
u
281566083191392405996
158123107034570359949
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
65
4u
64
+ ··· u + 1
c
2
, c
4
u
65
+ 2u
64
+ ··· 3u + 1
c
3
u
65
11u
64
+ ··· + 6u 2
c
5
u
65
+ 3u
64
+ ··· 288u + 288
c
6
, c
9
, c
10
u
65
2u
64
+ ··· 5u + 1
c
7
u
65
+ 18u
63
+ ··· 5599u + 599
c
8
u
65
2u
64
+ ··· + 875u + 199
c
11
u
65
12u
64
+ ··· + 15361u 937
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
65
12y
64
+ ··· + 5y 1
c
2
, c
4
y
65
48y
64
+ ··· + 65y 1
c
3
y
65
+ 9y
64
+ ··· 32y 4
c
5
y
65
15y
64
+ ··· + 2689344y 82944
c
6
, c
9
, c
10
y
65
60y
64
+ ··· + 5y 1
c
7
y
65
+ 36y
64
+ ··· + 25490581y 358801
c
8
y
65
+ 76y
64
+ ··· + 46837y 39601
c
11
y
65
+ 40y
64
+ ··· + 64331905y 877969
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.678260 + 0.569072I
a = 0.016122 + 0.492515I
b = 0.137240 0.682876I
4.77180 + 0.79551I 17.2605 1.0216I
u = 0.678260 0.569072I
a = 0.016122 0.492515I
b = 0.137240 + 0.682876I
4.77180 0.79551I 17.2605 + 1.0216I
u = 1.14092
a = 0.115125
b = 0.758312
1.93638 0
u = 0.382954 + 0.760163I
a = 0.794021 + 0.280590I
b = 0.046721 0.656714I
3.78970 + 3.79443I 12.5834 7.8440I
u = 0.382954 0.760163I
a = 0.794021 0.280590I
b = 0.046721 + 0.656714I
3.78970 3.79443I 12.5834 + 7.8440I
u = 1.125870 + 0.332132I
a = 0.689757 + 0.119579I
b = 0.687361 + 0.619577I
2.88797 1.12159I 0
u = 1.125870 0.332132I
a = 0.689757 0.119579I
b = 0.687361 0.619577I
2.88797 + 1.12159I 0
u = 0.614901 + 0.535330I
a = 0.761912 + 0.631452I
b = 0.88334 1.27623I
5.66757 + 7.97706I 9.36287 3.39629I
u = 0.614901 0.535330I
a = 0.761912 0.631452I
b = 0.88334 + 1.27623I
5.66757 7.97706I 9.36287 + 3.39629I
u = 0.366460 + 0.727085I
a = 1.42890 + 1.39175I
b = 0.95536 1.32953I
4.76852 12.28510I 7.44035 + 8.76560I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.366460 0.727085I
a = 1.42890 1.39175I
b = 0.95536 + 1.32953I
4.76852 + 12.28510I 7.44035 8.76560I
u = 1.191650 + 0.175560I
a = 0.880003 + 0.405987I
b = 0.699401 0.545647I
0.37120 4.07451I 0
u = 1.191650 0.175560I
a = 0.880003 0.405987I
b = 0.699401 + 0.545647I
0.37120 + 4.07451I 0
u = 1.235000 + 0.041141I
a = 0.79341 1.31957I
b = 0.31476 + 2.40619I
3.95963 + 0.42107I 0
u = 1.235000 0.041141I
a = 0.79341 + 1.31957I
b = 0.31476 2.40619I
3.95963 0.42107I 0
u = 0.049713 + 0.754423I
a = 0.714482 + 0.300281I
b = 0.855140 + 0.797416I
0.40517 + 5.06438I 3.95497 7.18299I
u = 0.049713 0.754423I
a = 0.714482 0.300281I
b = 0.855140 0.797416I
0.40517 5.06438I 3.95497 + 7.18299I
u = 0.339899 + 0.663108I
a = 1.64239 1.16141I
b = 0.781935 + 0.829638I
0.09522 6.44593I 5.03058 + 9.01119I
u = 0.339899 0.663108I
a = 1.64239 + 1.16141I
b = 0.781935 0.829638I
0.09522 + 6.44593I 5.03058 9.01119I
u = 1.235770 + 0.297333I
a = 0.406289 1.235280I
b = 0.943698 + 0.958823I
3.56058 8.86995I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.235770 0.297333I
a = 0.406289 + 1.235280I
b = 0.943698 0.958823I
3.56058 + 8.86995I 0
u = 0.380812 + 0.610143I
a = 0.06444 + 1.61329I
b = 0.058355 0.809391I
4.44968 3.80628I 12.2239 + 7.2828I
u = 0.380812 0.610143I
a = 0.06444 1.61329I
b = 0.058355 + 0.809391I
4.44968 + 3.80628I 12.2239 7.2828I
u = 1.288300 + 0.091889I
a = 0.31534 2.36850I
b = 0.348122 + 0.973758I
5.10270 3.01321I 0
u = 1.288300 0.091889I
a = 0.31534 + 2.36850I
b = 0.348122 0.973758I
5.10270 + 3.01321I 0
u = 1.283700 + 0.210832I
a = 0.005363 0.773420I
b = 0.480767 0.212588I
1.09839 + 1.94254I 0
u = 1.283700 0.210832I
a = 0.005363 + 0.773420I
b = 0.480767 + 0.212588I
1.09839 1.94254I 0
u = 0.419028 + 0.549280I
a = 1.77640 + 1.52917I
b = 0.042992 0.667229I
4.67294 + 0.09706I 13.36415 + 0.53030I
u = 0.419028 0.549280I
a = 1.77640 1.52917I
b = 0.042992 + 0.667229I
4.67294 0.09706I 13.36415 0.53030I
u = 0.301362 + 0.621548I
a = 0.934672 0.857687I
b = 0.837815 + 0.659025I
0.29568 + 2.24337I 4.30616 2.82871I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.301362 0.621548I
a = 0.934672 + 0.857687I
b = 0.837815 0.659025I
0.29568 2.24337I 4.30616 + 2.82871I
u = 1.31305
a = 2.73258
b = 0.192967
6.69568 0
u = 0.492722 + 0.447883I
a = 0.018732 0.417872I
b = 0.662214 + 0.833663I
0.86536 + 2.71020I 7.15754 3.04555I
u = 0.492722 0.447883I
a = 0.018732 + 0.417872I
b = 0.662214 0.833663I
0.86536 2.71020I 7.15754 + 3.04555I
u = 0.345537 + 0.561912I
a = 3.53045 + 1.22785I
b = 0.07014 3.28534I
2.29780 + 1.66494I 17.5253 + 6.6293I
u = 0.345537 0.561912I
a = 3.53045 1.22785I
b = 0.07014 + 3.28534I
2.29780 1.66494I 17.5253 6.6293I
u = 0.051518 + 0.628248I
a = 1.04887 0.98256I
b = 0.564358 0.403906I
3.01841 + 1.08766I 2.25646 1.14539I
u = 0.051518 0.628248I
a = 1.04887 + 0.98256I
b = 0.564358 + 0.403906I
3.01841 1.08766I 2.25646 + 1.14539I
u = 1.41925 + 0.19367I
a = 1.52410 1.19809I
b = 0.66039 + 1.31268I
6.55173 3.43032I 0
u = 1.41925 0.19367I
a = 1.52410 + 1.19809I
b = 0.66039 1.31268I
6.55173 + 3.43032I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.358057 + 0.432304I
a = 0.856983 + 0.012393I
b = 0.337227 + 0.939608I
0.927115 + 0.969009I 7.33388 5.10467I
u = 0.358057 0.432304I
a = 0.856983 0.012393I
b = 0.337227 0.939608I
0.927115 0.969009I 7.33388 + 5.10467I
u = 1.42039 + 0.24290I
a = 0.13396 1.83660I
b = 1.027690 + 0.777107I
5.81492 5.42387I 0
u = 1.42039 0.24290I
a = 0.13396 + 1.83660I
b = 1.027690 0.777107I
5.81492 + 5.42387I 0
u = 1.43036 + 0.22015I
a = 2.83053 + 4.42260I
b = 0.01146 3.25716I
7.99318 4.57389I 0
u = 1.43036 0.22015I
a = 2.83053 4.42260I
b = 0.01146 + 3.25716I
7.99318 + 4.57389I 0
u = 1.43947 + 0.17545I
a = 0.61970 1.47828I
b = 0.652456 + 0.963631I
6.93022 0.40426I 0
u = 1.43947 0.17545I
a = 0.61970 + 1.47828I
b = 0.652456 0.963631I
6.93022 + 0.40426I 0
u = 1.43628 + 0.25338I
a = 0.74240 2.08871I
b = 0.828861 + 0.874237I
5.79461 + 9.79626I 0
u = 1.43628 0.25338I
a = 0.74240 + 2.08871I
b = 0.828861 0.874237I
5.79461 9.79626I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44643 + 0.20811I
a = 1.52474 + 1.92775I
b = 0.076180 0.648466I
10.64080 + 2.70423I 0
u = 1.44643 0.20811I
a = 1.52474 1.92775I
b = 0.076180 + 0.648466I
10.64080 2.70423I 0
u = 1.44458 + 0.23052I
a = 0.00727 + 2.22521I
b = 0.008684 0.861520I
10.31070 + 6.89598I 0
u = 1.44458 0.23052I
a = 0.00727 2.22521I
b = 0.008684 + 0.861520I
10.31070 6.89598I 0
u = 1.45377 + 0.27698I
a = 0.60639 + 2.76642I
b = 0.97235 1.38618I
10.6167 + 15.9423I 0
u = 1.45377 0.27698I
a = 0.60639 2.76642I
b = 0.97235 + 1.38618I
10.6167 15.9423I 0
u = 1.46439 + 0.28501I
a = 0.788256 + 1.075800I
b = 0.145502 0.724051I
9.73502 7.58811I 0
u = 1.46439 0.28501I
a = 0.788256 1.075800I
b = 0.145502 + 0.724051I
9.73502 + 7.58811I 0
u = 1.49064 + 0.14963I
a = 1.32087 + 1.93888I
b = 0.77806 1.33217I
12.49300 5.62787I 0
u = 1.49064 0.14963I
a = 1.32087 1.93888I
b = 0.77806 + 1.33217I
12.49300 + 5.62787I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.50530 + 0.13452I
a = 0.26995 + 1.42007I
b = 0.180993 0.917016I
11.93110 3.09362I 0
u = 1.50530 0.13452I
a = 0.26995 1.42007I
b = 0.180993 + 0.917016I
11.93110 + 3.09362I 0
u = 0.113883 + 0.422940I
a = 1.56859 0.39304I
b = 0.431618 + 1.169140I
0.92611 + 1.21767I 5.78394 3.84378I
u = 0.113883 0.422940I
a = 1.56859 + 0.39304I
b = 0.431618 1.169140I
0.92611 1.21767I 5.78394 + 3.84378I
u = 0.242610
a = 5.62882
b = 1.13132
2.24319 1.34300
11
II. I
u
2
= hb 1, a + 1, u 1i
(i) Arc colorings
a
6
=
0
1
a
9
=
1
0
a
10
=
1
1
a
7
=
1
0
a
11
=
0
1
a
1
=
1
1
a
4
=
1
1
a
3
=
1
1
a
5
=
0
1
a
8
=
2
1
a
2
=
1
0
a
2
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
8
, c
9
, c
10
c
11
u 1
c
2
, c
6
u + 1
c
3
, c
5
u
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
8
c
9
, c
10
, c
11
y 1
c
3
, c
5
y
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
3.28987 12.0000
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
65
4u
64
+ ··· u + 1)
c
2
(u + 1)(u
65
+ 2u
64
+ ··· 3u + 1)
c
3
u(u
65
11u
64
+ ··· + 6u 2)
c
4
(u 1)(u
65
+ 2u
64
+ ··· 3u + 1)
c
5
u(u
65
+ 3u
64
+ ··· 288u + 288)
c
6
(u + 1)(u
65
2u
64
+ ··· 5u + 1)
c
7
(u 1)(u
65
+ 18u
63
+ ··· 5599u + 599)
c
8
(u 1)(u
65
2u
64
+ ··· + 875u + 199)
c
9
, c
10
(u 1)(u
65
2u
64
+ ··· 5u + 1)
c
11
(u 1)(u
65
12u
64
+ ··· + 15361u 937)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
65
12y
64
+ ··· + 5y 1)
c
2
, c
4
(y 1)(y
65
48y
64
+ ··· + 65y 1)
c
3
y(y
65
+ 9y
64
+ ··· 32y 4)
c
5
y(y
65
15y
64
+ ··· + 2689344y 82944)
c
6
, c
9
, c
10
(y 1)(y
65
60y
64
+ ··· + 5y 1)
c
7
(y 1)(y
65
+ 36y
64
+ ··· + 2.54906 × 10
7
y 358801)
c
8
(y 1)(y
65
+ 76y
64
+ ··· + 46837y 39601)
c
11
(y 1)(y
65
+ 40y
64
+ ··· + 6.43319 × 10
7
y 877969)
17