11a
263
(K11a
263
)
A knot diagram
1
Linearized knot diagam
4 8 1 2 11 9 10 3 7 5 6
Solving Sequence
2,8
3
5,9,10
11 4 1 7 6
c
2
c
8
c
10
c
4
c
1
c
7
c
6
c
3
, c
5
, c
9
, c
11
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= h−9u
7
+ 12u
6
+ 5u
5
62u
4
+ 26u
3
24u
2
+ 92d 64u + 16,
5u
7
+ u
6
13u
5
+ 37u
4
+ 6u
3
48u
2
+ 92c + 56u + 32,
3u
7
+ 4u
6
6u
5
13u
4
+ 24u
3
8u
2
+ 46b 6u 10,
4u
7
13u
6
+ 8u
5
+ 25u
4
78u
3
+ 26u
2
+ 92a + 8u 48, u
8
u
7
u
6
+ 5u
5
4u
4
+ 8u
2
+ 4u 4i
I
u
2
= h−2u
10
+ 3u
9
+ 2u
8
2u
7
2u
6
u
5
10u
4
+ 21u
3
16u
2
+ 4d + 10u,
u
7
+ 2u
5
+ u
4
u
3
u
2
+ 2c 4u + 2,
2u
10
+ 2u
9
+ 3u
8
2u
7
2u
6
+ 2u
5
9u
4
+ 12u
3
7u
2
+ 4b + 2,
2u
10
3u
9
3u
8
+ 4u
7
+ 2u
6
3u
5
+ 9u
4
15u
3
+ 11u
2
+ 4a 6,
u
11
2u
10
u
9
+ 3u
8
+ u
7
2u
6
+ 4u
5
11u
4
+ 9u
3
u
2
2u + 2i
I
u
3
= hu
10
u
9
2u
8
+ u
6
+ u
5
+ 7u
4
7u
3
+ 2u
2
+ 4d 2u 4, u
10
3u
8
+ 3u
6
+ 2u
4
2u
3
3u
2
+ 4c + 6u 2,
u
8
2u
6
u
5
+ u
4
+ u
3
+ 4u
2
+ 2b 2u,
2u
9
+ 3u
8
+ 2u
7
2u
6
2u
5
u
4
10u
3
+ 21u
2
+ 4a 16u + 10,
u
11
2u
10
u
9
+ 3u
8
+ u
7
2u
6
+ 4u
5
11u
4
+ 9u
3
u
2
2u + 2i
I
u
4
= hu
10
u
9
2u
8
+ u
6
+ u
5
+ 7u
4
7u
3
+ 2u
2
+ 4d 2u 4, u
10
3u
8
+ 3u
6
+ 2u
4
2u
3
3u
2
+ 4c + 6u 2,
2u
10
+ 2u
9
+ 3u
8
2u
7
2u
6
+ 2u
5
9u
4
+ 12u
3
7u
2
+ 4b + 2,
2u
10
3u
9
3u
8
+ 4u
7
+ 2u
6
3u
5
+ 9u
4
15u
3
+ 11u
2
+ 4a 6,
u
11
2u
10
u
9
+ 3u
8
+ u
7
2u
6
+ 4u
5
11u
4
+ 9u
3
u
2
2u + 2i
I
u
5
= h−a
2
c ca + d a 1, a
2
c + c
2
ca a 1, a
2
+ b + a, a
3
+ 2a
2
+ a + 1, u + 1i
I
v
1
= ha, d, c + 1, b 1, v + 1i
I
v
2
= hc, d + 1, b, a 1, v + 1i
I
v
3
= ha, d + 1, c + a, b 1, v + 1i
I
v
4
= ha, da c + 1, dv 1, cv a v, b 1i
* 8 irreducible components of dim
C
= 0, with total 50 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h−9u
7
+ 12u
6
+ · · · + 92d + 16, 5u
7
+ u
6
+ · · · + 92c + 32, 3u
7
+
4u
6
+ · · · + 46b 10, 4u
7
13u
6
+ · · · + 92a 48, u
8
u
7
+ · · · + 4u 4i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
0.0434783u
7
+ 0.141304u
6
+ ··· 0.0869565u + 0.521739
0.0652174u
7
0.0869565u
6
+ ··· + 0.130435u + 0.217391
a
9
=
u
u
3
+ u
a
10
=
0.0543478u
7
0.0108696u
6
+ ··· 0.608696u 0.347826
0.0978261u
7
0.130435u
6
+ ··· + 0.695652u 0.173913
a
11
=
0.108696u
7
0.0217391u
6
+ ··· 0.217391u 0.695652
0.173913u
7
0.0652174u
6
+ ··· + 0.347826u 0.0869565
a
4
=
0.0217391u
7
+ 0.0543478u
6
+ ··· + 0.0434783u + 0.739130
0.0652174u
7
0.0869565u
6
+ ··· + 0.130435u + 0.217391
a
1
=
0.0217391u
7
+ 0.0543478u
6
+ ··· + 0.0434783u + 0.739130
0.0760870u
7
+ 0.0652174u
6
+ ··· 0.347826u + 0.0869565
a
7
=
0.0217391u
7
0.0543478u
6
+ ··· 0.0434783u + 0.260870
0.0652174u
7
+ 0.0869565u
6
+ ··· + 0.869565u 0.217391
a
6
=
0.0434783u
7
+ 0.141304u
6
+ ··· 0.0869565u + 0.521739
0.0652174u
7
0.0869565u
6
+ ··· + 0.130435u + 0.217391
a
6
=
0.0434783u
7
+ 0.141304u
6
+ ··· 0.0869565u + 0.521739
0.0652174u
7
0.0869565u
6
+ ··· + 0.130435u + 0.217391
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
23
u
7
9
23
u
6
+
25
23
u
5
11
23
u
4
8
23
u
3
+
110
23
u
2
136
23
u
334
23
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
u
8
u
7
5u
6
+ 4u
5
+ 8u
4
3u
3
3u
2
4u 1
c
2
, c
8
u
8
+ u
7
u
6
5u
5
4u
4
+ 8u
2
4u 4
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y
8
11y
7
+ 49y
6
108y
5
+ 108y
4
15y
3
31y
2
10y + 1
c
2
, c
8
y
8
3y
7
+ 3y
6
y
5
96y
3
+ 96y
2
80y + 16
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.763708 + 0.464906I
a = 0.494536 + 0.909342I
b = 0.186694 0.577706I
c = 0.514343 0.443344I
d = 0.800440 0.464559I
1.02858 + 1.92389I 7.30727 5.93806I
u = 0.763708 0.464906I
a = 0.494536 0.909342I
b = 0.186694 + 0.577706I
c = 0.514343 + 0.443344I
d = 0.800440 + 0.464559I
1.02858 1.92389I 7.30727 + 5.93806I
u = 0.50215 + 1.40047I
a = 1.123050 + 0.278329I
b = 1.51678 0.24068I
c = 0.191820 + 1.014270I
d = 0.95373 1.43303I
13.1698 + 5.8977I 19.7832 3.0693I
u = 0.50215 1.40047I
a = 1.123050 0.278329I
b = 1.51678 + 0.24068I
c = 0.191820 1.014270I
d = 0.95373 + 1.43303I
13.1698 5.8977I 19.7832 + 3.0693I
u = 0.509938
a = 0.497054
b = 0.282608
c = 0.554200
d = 0.253467
0.633408 16.3410
u = 1.37290 + 0.82084I
a = 0.288086 + 1.350870I
b = 1.50879 0.39741I
c = 0.937075 0.270804I
d = 0.71334 + 2.09107I
16.0437 13.7204I 19.7312 + 6.7283I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.37290 0.82084I
a = 0.288086 1.350870I
b = 1.50879 + 0.39741I
c = 0.937075 + 0.270804I
d = 0.71334 2.09107I
16.0437 + 13.7204I 19.7312 6.7283I
u = 1.73262
a = 0.183795
b = 1.67197
c = 0.964994
d = 0.318446
17.5248 22.0160
7
II. I
u
2
= h−2u
10
+ 3u
9
+ · · · + 4d + 10u, u
7
+ 2u
5
+ · · · + 2c + 2, 2u
10
+
2u
9
+ · · · + 4b + 2, 2u
10
3u
9
+ · · · + 4a 6, u
11
2u
10
+ · · · 2u + 2i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
1
2
u
10
+
3
4
u
9
+ ···
11
4
u
2
+
3
2
1
2
u
10
1
2
u
9
+ ··· +
7
4
u
2
1
2
a
9
=
u
u
3
+ u
a
10
=
1
2
u
7
u
5
+ ··· + 2u 1
1
2
u
10
3
4
u
9
+ ··· + 4u
2
5
2
u
a
11
=
1
2
u
7
u
5
+
1
2
u
3
+
3
2
u 1
1
2
u
10
1
2
u
9
+ ··· +
7
2
u
2
2u
a
4
=
1
4
u
9
1
2
u
7
+ ··· u
2
+ 1
1
2
u
10
1
2
u
9
+ ··· +
7
4
u
2
1
2
a
1
=
1
4
u
9
1
2
u
7
+ ··· u
2
+ 1
1
4
u
9
1
2
u
7
+ ···
1
2
u
2
+
1
2
u
a
7
=
1
2
u
10
+
5
4
u
9
+ ··· +
1
2
u + 1
u
10
3
2
u
9
+ ··· u
1
2
a
6
=
1
2
u
10
+
3
4
u
9
+ ··· +
1
2
u + 1
1
2
u
9
+
1
4
u
8
+ ··· 2u +
1
2
a
6
=
1
2
u
10
+
3
4
u
9
+ ··· +
1
2
u + 1
1
2
u
9
+
1
4
u
8
+ ··· 2u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
10
6u
8
2u
7
+ 6u
6
+ 4u
5
+ 8u
4
8u
3
10u
2
+ 8u 16
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
10
, c
11
u
11
2u
10
4u
9
+ 8u
8
+ 6u
7
8u
6
7u
5
2u
4
+ 7u
3
+ 3u
2
u + 1
c
2
, c
8
u
11
+ 2u
10
u
9
3u
8
+ u
7
+ 2u
6
+ 4u
5
+ 11u
4
+ 9u
3
+ u
2
2u 2
c
6
, c
7
, c
9
u
11
3u
9
2u
8
+ 3u
7
+ 4u
6
2u
4
u
3
+ 3u
2
4
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
10
, c
11
y
11
12y
10
+ ··· 5y 1
c
2
, c
8
y
11
6y
10
+ ··· + 8y 4
c
6
, c
7
, c
9
y
11
6y
10
+ ··· + 24y 16
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.217339 + 1.116860I
a = 0.959694 0.121609I
b = 1.379210 + 0.103381I
c = 0.530848 0.577122I
d = 2.14358 + 0.93612I
6.49548 2.41892I 16.9282 + 2.8895I
u = 0.217339 1.116860I
a = 0.959694 + 0.121609I
b = 1.379210 0.103381I
c = 0.530848 + 0.577122I
d = 2.14358 0.93612I
6.49548 + 2.41892I 16.9282 2.8895I
u = 1.116820 + 0.404951I
a = 0.142488 1.095710I
b = 0.399448 + 0.789847I
c = 1.146260 0.241815I
d = 1.31237 + 1.12740I
3.96110 4.69742I 14.9188 + 5.8832I
u = 1.116820 0.404951I
a = 0.142488 + 1.095710I
b = 0.399448 0.789847I
c = 1.146260 + 0.241815I
d = 1.31237 1.12740I
3.96110 + 4.69742I 14.9188 5.8832I
u = 0.323694 + 0.583510I
a = 1.18678 0.80697I
b = 0.172742 + 0.362556I
c = 0.63939 + 1.57288I
d = 0.309250 0.329055I
1.55892 + 0.74196I 8.46073 1.11909I
u = 0.323694 0.583510I
a = 1.18678 + 0.80697I
b = 0.172742 0.362556I
c = 0.63939 1.57288I
d = 0.309250 + 0.329055I
1.55892 0.74196I 8.46073 + 1.11909I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.38823 + 0.36743I
a = 0.243517 + 0.779738I
b = 1.50982 0.17565I
c = 0.526224 + 0.695676I
d = 1.10814 + 1.10674I
11.90560 2.58451I 20.1919 + 1.0166I
u = 1.38823 0.36743I
a = 0.243517 0.779738I
b = 1.50982 + 0.17565I
c = 0.526224 0.695676I
d = 1.10814 1.10674I
11.90560 + 2.58451I 20.1919 1.0166I
u = 0.552641
a = 0.218260
b = 0.780044
c = 2.03993
d = 3.71662
4.41605 21.4290
u = 1.33508 + 0.61220I
a = 0.016930 1.207730I
b = 1.48612 + 0.29515I
c = 0.508471 0.520729I
d = 0.98497 1.74274I
10.05940 + 8.65115I 17.7857 5.5789I
u = 1.33508 0.61220I
a = 0.016930 + 1.207730I
b = 1.48612 0.29515I
c = 0.508471 + 0.520729I
d = 0.98497 + 1.74274I
10.05940 8.65115I 17.7857 + 5.5789I
12
III. I
u
3
= hu
10
u
9
+ · · · + 4d 4, u
10
3u
8
+ · · · + 4c 2, u
8
2u
6
+ · · · +
2b 2u, 2u
9
+ 3u
8
+ · · · + 4a + 10, u
11
2u
10
+ · · · 2u + 2i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
1
2
u
9
3
4
u
8
+ ··· + 4u
5
2
1
2
u
8
+ u
6
+ ··· 2u
2
+ u
a
9
=
u
u
3
+ u
a
10
=
1
4
u
10
+
3
4
u
8
+ ···
3
2
u +
1
2
1
4
u
10
+
1
4
u
9
+ ··· +
1
2
u + 1
a
11
=
1
2
u
9
+ u
8
+ ···
9
2
u + 2
1
a
4
=
1
2
u
9
5
4
u
8
+ ··· + 5u
5
2
1
2
u
8
+ u
6
+ ··· 2u
2
+ u
a
1
=
1
2
u
9
5
4
u
8
+ ··· + 5u
5
2
1
4
u
10
+
1
2
u
8
+ ··· + u
3
1
a
7
=
1
4
u
8
+
1
2
u
6
+ ··· +
1
2
u
1
2
1
2
u
5
1
2
u
3
1
2
u
2
+ u
a
6
=
1
2
u
10
1
4
u
9
+ ··· + u
3
2
1
2
u
10
1
2
u
9
+ ··· + u
1
2
a
6
=
1
2
u
10
1
4
u
9
+ ··· + u
3
2
1
2
u
10
1
2
u
9
+ ··· + u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
10
6u
8
2u
7
+ 6u
6
+ 4u
5
+ 8u
4
8u
3
10u
2
+ 8u 16
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
11
3u
9
2u
8
+ 3u
7
+ 4u
6
2u
4
u
3
+ 3u
2
4
c
2
, c
8
u
11
+ 2u
10
u
9
3u
8
+ u
7
+ 2u
6
+ 4u
5
+ 11u
4
+ 9u
3
+ u
2
2u 2
c
5
, c
6
, c
7
c
9
, c
10
, c
11
u
11
2u
10
4u
9
+ 8u
8
+ 6u
7
8u
6
7u
5
2u
4
+ 7u
3
+ 3u
2
u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
y
11
6y
10
+ ··· + 24y 16
c
2
, c
8
y
11
6y
10
+ ··· + 8y 4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y
11
12y
10
+ ··· 5y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.217339 + 1.116860I
a = 1.16746 + 1.69211I
b = 0.529187 0.718311I
c = 0.142356 + 1.207200I
d = 0.344399 1.045410I
6.49548 2.41892I 16.9282 + 2.8895I
u = 0.217339 1.116860I
a = 1.16746 1.69211I
b = 0.529187 + 0.718311I
c = 0.142356 1.207200I
d = 0.344399 + 1.045410I
6.49548 + 2.41892I 16.9282 2.8895I
u = 1.116820 + 0.404951I
a = 0.71505 + 1.26875I
b = 1.378090 0.194114I
c = 0.542743 0.510432I
d = 0.602844 1.166020I
3.96110 4.69742I 14.9188 + 5.8832I
u = 1.116820 0.404951I
a = 0.71505 1.26875I
b = 1.378090 + 0.194114I
c = 0.542743 + 0.510432I
d = 0.602844 + 1.166020I
3.96110 + 4.69742I 14.9188 5.8832I
u = 0.323694 + 0.583510I
a = 0.656040 + 0.166054I
b = 1.124760 0.136043I
c = 0.349546 0.489945I
d = 0.855030 + 0.431288I
1.55892 + 0.74196I 8.46073 1.11909I
u = 0.323694 0.583510I
a = 0.656040 0.166054I
b = 1.124760 + 0.136043I
c = 0.349546 + 0.489945I
d = 0.855030 0.431288I
1.55892 0.74196I 8.46073 + 1.11909I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.38823 + 0.36743I
a = 0.548785 + 0.942487I
b = 0.986131 0.772404I
c = 1.047690 0.150769I
d = 0.624556 + 0.992977I
11.90560 2.58451I 20.1919 + 1.0166I
u = 1.38823 0.36743I
a = 0.548785 0.942487I
b = 0.986131 + 0.772404I
c = 1.047690 + 0.150769I
d = 0.624556 0.992977I
11.90560 + 2.58451I 20.1919 1.0166I
u = 0.552641
a = 6.72520
b = 1.12735
c = 1.41149
d = 0.120619
4.41605 21.4290
u = 1.33508 + 0.61220I
a = 0.115017 + 1.358080I
b = 0.360061 1.006500I
c = 1.003500 0.239081I
d = 0.76197 + 1.60205I
10.05940 + 8.65115I 17.7857 5.5789I
u = 1.33508 0.61220I
a = 0.115017 1.358080I
b = 0.360061 + 1.006500I
c = 1.003500 + 0.239081I
d = 0.76197 1.60205I
10.05940 8.65115I 17.7857 + 5.5789I
17
IV. I
u
4
= hu
10
u
9
+ · · · + 4d 4, u
10
3u
8
+ · · · + 4c 2, 2u
10
+ 2u
9
+
· · · + 4b + 2, 2u
10
3u
9
+ · · · + 4a 6, u
11
2u
10
+ · · · 2u + 2i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
1
2
u
10
+
3
4
u
9
+ ···
11
4
u
2
+
3
2
1
2
u
10
1
2
u
9
+ ··· +
7
4
u
2
1
2
a
9
=
u
u
3
+ u
a
10
=
1
4
u
10
+
3
4
u
8
+ ···
3
2
u +
1
2
1
4
u
10
+
1
4
u
9
+ ··· +
1
2
u + 1
a
11
=
1
2
u
10
+
3
2
u
8
+ ··· +
5
2
u
2
3
2
u
1
a
4
=
1
4
u
9
1
2
u
7
+ ··· u
2
+ 1
1
2
u
10
1
2
u
9
+ ··· +
7
4
u
2
1
2
a
1
=
1
4
u
9
1
2
u
7
+ ··· u
2
+ 1
1
4
u
9
1
2
u
7
+ ···
1
2
u
2
+
1
2
u
a
7
=
1
4
u
8
+
1
2
u
6
+ ··· +
1
2
u
1
2
1
2
u
5
1
2
u
3
1
2
u
2
+ u
a
6
=
1
2
u
10
1
4
u
9
+ ··· + u
3
2
1
2
u
10
1
2
u
9
+ ··· + u
1
2
a
6
=
1
2
u
10
1
4
u
9
+ ··· + u
3
2
1
2
u
10
1
2
u
9
+ ··· + u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
10
6u
8
2u
7
+ 6u
6
+ 4u
5
+ 8u
4
8u
3
10u
2
+ 8u 16
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
u
11
2u
10
4u
9
+ 8u
8
+ 6u
7
8u
6
7u
5
2u
4
+ 7u
3
+ 3u
2
u + 1
c
2
, c
8
u
11
+ 2u
10
u
9
3u
8
+ u
7
+ 2u
6
+ 4u
5
+ 11u
4
+ 9u
3
+ u
2
2u 2
c
5
, c
10
, c
11
u
11
3u
9
2u
8
+ 3u
7
+ 4u
6
2u
4
u
3
+ 3u
2
4
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
y
11
12y
10
+ ··· 5y 1
c
2
, c
8
y
11
6y
10
+ ··· + 8y 4
c
5
, c
10
, c
11
y
11
6y
10
+ ··· + 24y 16
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.217339 + 1.116860I
a = 0.959694 0.121609I
b = 1.379210 + 0.103381I
c = 0.142356 + 1.207200I
d = 0.344399 1.045410I
6.49548 2.41892I 16.9282 + 2.8895I
u = 0.217339 1.116860I
a = 0.959694 + 0.121609I
b = 1.379210 0.103381I
c = 0.142356 1.207200I
d = 0.344399 + 1.045410I
6.49548 + 2.41892I 16.9282 2.8895I
u = 1.116820 + 0.404951I
a = 0.142488 1.095710I
b = 0.399448 + 0.789847I
c = 0.542743 0.510432I
d = 0.602844 1.166020I
3.96110 4.69742I 14.9188 + 5.8832I
u = 1.116820 0.404951I
a = 0.142488 + 1.095710I
b = 0.399448 0.789847I
c = 0.542743 + 0.510432I
d = 0.602844 + 1.166020I
3.96110 + 4.69742I 14.9188 5.8832I
u = 0.323694 + 0.583510I
a = 1.18678 0.80697I
b = 0.172742 + 0.362556I
c = 0.349546 0.489945I
d = 0.855030 + 0.431288I
1.55892 + 0.74196I 8.46073 1.11909I
u = 0.323694 0.583510I
a = 1.18678 + 0.80697I
b = 0.172742 0.362556I
c = 0.349546 + 0.489945I
d = 0.855030 0.431288I
1.55892 0.74196I 8.46073 + 1.11909I
21
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.38823 + 0.36743I
a = 0.243517 + 0.779738I
b = 1.50982 0.17565I
c = 1.047690 0.150769I
d = 0.624556 + 0.992977I
11.90560 2.58451I 20.1919 + 1.0166I
u = 1.38823 0.36743I
a = 0.243517 0.779738I
b = 1.50982 + 0.17565I
c = 1.047690 + 0.150769I
d = 0.624556 0.992977I
11.90560 + 2.58451I 20.1919 1.0166I
u = 0.552641
a = 0.218260
b = 0.780044
c = 1.41149
d = 0.120619
4.41605 21.4290
u = 1.33508 + 0.61220I
a = 0.016930 1.207730I
b = 1.48612 + 0.29515I
c = 1.003500 0.239081I
d = 0.76197 + 1.60205I
10.05940 + 8.65115I 17.7857 5.5789I
u = 1.33508 0.61220I
a = 0.016930 + 1.207730I
b = 1.48612 0.29515I
c = 1.003500 + 0.239081I
d = 0.76197 1.60205I
10.05940 8.65115I 17.7857 + 5.5789I
22
V. I
u
5
=
h−a
2
cca+da1, a
2
c+c
2
ca a1, a
2
+b +a, a
3
+2a
2
+a +1, u+1i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
1
a
3
=
1
1
a
5
=
a
a
2
a
a
9
=
1
0
a
10
=
c
a
2
c + ca + a + 1
a
11
=
ca + a
2
+ c + a + 1
1
a
4
=
a
2
a
2
a
a
1
=
a
2
a
a
7
=
a
2
c ca a 1
c
a
6
=
a
2
c ca c a 1
c
a
6
=
a
2
c ca c a 1
c
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
(u
3
u 1)
2
c
2
, c
8
(u 1)
6
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
(y
3
2y
2
+ y 1)
2
c
2
, c
8
(y 1)
6
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.122561 + 0.744862I
b = 0.662359 0.562280I
c = 0.662359 + 0.562280I
d = 0.122561 + 0.744862I
4.93480 18.0000
u = 1.00000
a = 0.122561 + 0.744862I
b = 0.662359 0.562280I
c = 1.32472
d = 1.75488
4.93480 18.0000
u = 1.00000
a = 0.122561 0.744862I
b = 0.662359 + 0.562280I
c = 0.662359 0.562280I
d = 0.122561 0.744862I
4.93480 18.0000
u = 1.00000
a = 0.122561 0.744862I
b = 0.662359 + 0.562280I
c = 1.32472
d = 1.75488
4.93480 18.0000
u = 1.00000
a = 1.75488
b = 1.32472
c = 0.662359 + 0.562280I
d = 0.122561 + 0.744862I
4.93480 18.0000
u = 1.00000
a = 1.75488
b = 1.32472
c = 0.662359 0.562280I
d = 0.122561 0.744862I
4.93480 18.0000
26
VI. I
v
1
= ha, d, c + 1, b 1, v + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
1
0
a
3
=
1
0
a
5
=
0
1
a
9
=
1
0
a
10
=
1
0
a
11
=
1
1
a
4
=
1
1
a
1
=
0
1
a
7
=
1
0
a
6
=
1
0
a
6
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u 1
c
2
, c
6
, c
7
c
8
, c
9
u
c
3
, c
4
, c
10
c
11
u + 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
10
, c
11
y 1
c
2
, c
6
, c
7
c
8
, c
9
y
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 0
3.28987 12.0000
30
VII. I
v
2
= hc, d + 1, b, a 1, v + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
1
0
a
3
=
1
0
a
5
=
1
0
a
9
=
1
0
a
10
=
0
1
a
11
=
1
1
a
4
=
1
0
a
1
=
1
0
a
7
=
1
1
a
6
=
0
1
a
6
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
8
u
c
5
, c
9
u + 1
c
6
, c
7
, c
10
c
11
u 1
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
8
y
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y 1
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
3.28987 12.0000
34
VIII. I
v
3
= ha, d + 1, c + a, b 1, v + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
1
0
a
3
=
1
0
a
5
=
0
1
a
9
=
1
0
a
10
=
0
1
a
11
=
0
1
a
4
=
1
1
a
1
=
0
1
a
7
=
1
1
a
6
=
0
1
a
6
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
u 1
c
2
, c
5
, c
8
c
10
, c
11
u
c
3
, c
4
, c
9
u + 1
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
y 1
c
2
, c
5
, c
8
c
10
, c
11
y
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 0
d = 1.00000
3.28987 12.0000
38
IX. I
v
4
= ha, da c + 1, dv 1, cv a v, b 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
v
0
a
3
=
1
0
a
5
=
0
1
a
9
=
v
0
a
10
=
1
d
a
11
=
1
d + 1
a
4
=
1
1
a
1
=
0
1
a
7
=
v 1
d
a
6
=
1
d
a
6
=
1
d
(ii) Obstruction class = 1
(iii) Cusp Shapes = d
2
+ v
2
20
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
39
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
4.93480 21.2841 + 0.0228I
40
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
u(u 1)
2
(u
3
u 1)
2
· (u
8
u
7
5u
6
+ 4u
5
+ 8u
4
3u
3
3u
2
4u 1)
· (u
11
3u
9
2u
8
+ 3u
7
+ 4u
6
2u
4
u
3
+ 3u
2
4)
· (u
11
2u
10
4u
9
+ 8u
8
+ 6u
7
8u
6
7u
5
2u
4
+ 7u
3
+ 3u
2
u + 1)
2
c
2
, c
8
u
3
(u 1)
6
(u
8
+ u
7
u
6
5u
5
4u
4
+ 8u
2
4u 4)
· (u
11
+ 2u
10
u
9
3u
8
+ u
7
+ 2u
6
+ 4u
5
+ 11u
4
+ 9u
3
+ u
2
2u 2)
3
c
3
, c
4
, c
9
u(u + 1)
2
(u
3
u 1)
2
· (u
8
u
7
5u
6
+ 4u
5
+ 8u
4
3u
3
3u
2
4u 1)
· (u
11
3u
9
2u
8
+ 3u
7
+ 4u
6
2u
4
u
3
+ 3u
2
4)
· (u
11
2u
10
4u
9
+ 8u
8
+ 6u
7
8u
6
7u
5
2u
4
+ 7u
3
+ 3u
2
u + 1)
2
c
5
, c
10
, c
11
u(u 1)(u + 1)(u
3
u 1)
2
· (u
8
u
7
5u
6
+ 4u
5
+ 8u
4
3u
3
3u
2
4u 1)
· (u
11
3u
9
2u
8
+ 3u
7
+ 4u
6
2u
4
u
3
+ 3u
2
4)
· (u
11
2u
10
4u
9
+ 8u
8
+ 6u
7
8u
6
7u
5
2u
4
+ 7u
3
+ 3u
2
u + 1)
2
41
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y(y 1)
2
(y
3
2y
2
+ y 1)
2
· (y
8
11y
7
+ 49y
6
108y
5
+ 108y
4
15y
3
31y
2
10y + 1)
· ((y
11
12y
10
+ ··· 5y 1)
2
)(y
11
6y
10
+ ··· + 24y 16)
c
2
, c
8
y
3
(y 1)
6
(y
8
3y
7
+ 3y
6
y
5
96y
3
+ 96y
2
80y + 16)
· (y
11
6y
10
+ ··· + 8y 4)
3
42