9
16
(K9a
25
)
A knot diagram
1
Linearized knot diagam
5 6 8 3 2 9 1 4 7
Solving Sequence
1,5
2 6
3,7
8 4 9
c
1
c
5
c
2
c
7
c
4
c
9
c
3
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
6
+ u
5
3u
4
2u
3
+ 2u
2
+ a u + 1, u
8
+ u
7
4u
6
3u
5
+ 5u
4
+ u
3
u
2
+ 3u 1i
I
u
2
= h−u
11
+ 4u
9
u
8
5u
7
+ 3u
6
+ u
5
2u
4
+ u
3
+ b + u 1,
u
11
u
10
+ 4u
9
+ 2u
8
7u
7
+ u
6
+ 5u
5
5u
4
+ u
3
+ 3u
2
+ a 2u,
u
12
+ u
11
4u
10
2u
9
+ 7u
8
u
7
5u
6
+ 5u
5
u
4
3u
3
+ 2u
2
+ 1i
I
u
3
= hb + 1, a + 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 21 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
6
+ u
5
3u
4
2u
3
+ 2u
2
+ a u + 1, u
8
+ u
7
4u
6
3u
5
+
5u
4
+ u
3
u
2
+ 3u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
u
6
u
5
+ 3u
4
+ 2u
3
2u
2
+ u 1
u
a
8
=
u
6
u
5
+ 3u
4
+ 2u
3
2u
2
1
u
a
4
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
9
=
u
7
+ u
6
3u
5
2u
4
+ 2u
3
u
2
+ u + 1
u
2
a
9
=
u
7
+ u
6
3u
5
2u
4
+ 2u
3
u
2
+ u + 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
6
+ 2u
5
+ 10u
4
8u
3
12u
2
+ 10u 16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
u
8
u
7
4u
6
+ 3u
5
+ 5u
4
u
3
u
2
3u 1
c
3
, c
8
u
8
3u
7
+ 3u
6
+ 2u
5
8u
4
+ 9u
3
3u
2
2u + 2
c
4
u
8
+ 3u
7
+ 5u
6
+ 4u
5
+ 2u
4
+ 13u
3
+ 13u
2
+ 16u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
y
8
9y
7
+ 32y
6
53y
5
+ 31y
4
+ 15y
3
15y
2
7y + 1
c
3
, c
8
y
8
3y
7
+ 5y
6
4y
5
+ 2y
4
13y
3
+ 13y
2
16y + 4
c
4
y
8
+ y
7
+ 5y
6
48y
5
58y
4
205y
3
231y
2
152y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.151337 + 0.673064I
a = 0.076017 0.952103I
b = 0.151337 + 0.673064I
1.48505 2.26376I 5.94128 + 4.53378I
u = 0.151337 0.673064I
a = 0.076017 + 0.952103I
b = 0.151337 0.673064I
1.48505 + 2.26376I 5.94128 4.53378I
u = 1.359440 + 0.207304I
a = 2.50827 1.24101I
b = 1.359440 + 0.207304I
6.22518 3.55755I 14.5274 + 2.6249I
u = 1.359440 0.207304I
a = 2.50827 + 1.24101I
b = 1.359440 0.207304I
6.22518 + 3.55755I 14.5274 2.6249I
u = 1.42757 + 0.33227I
a = 1.86256 1.18850I
b = 1.42757 + 0.33227I
8.73978 + 9.88301I 15.2825 6.0696I
u = 1.42757 0.33227I
a = 1.86256 + 1.18850I
b = 1.42757 0.33227I
8.73978 9.88301I 15.2825 + 6.0696I
u = 1.50912
a = 2.36273
b = 1.50912
13.4445 18.3370
u = 0.342714
a = 0.776649
b = 0.342714
0.719034 14.1600
5
II.
I
u
2
= h−u
11
+4u
9
+· · ·+b1, u
11
u
10
+· · ·+a2u, u
12
+u
11
+· · ·+2u
2
+1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
u
11
+ u
10
4u
9
2u
8
+ 7u
7
u
6
5u
5
+ 5u
4
u
3
3u
2
+ 2u
u
11
4u
9
+ u
8
+ 5u
7
3u
6
u
5
+ 2u
4
u
3
u + 1
a
8
=
u
10
3u
8
+ 2u
7
+ 2u
6
4u
5
+ 3u
4
3u
2
+ 3u 1
u
11
4u
9
+ u
8
+ 5u
7
3u
6
u
5
+ 2u
4
u
3
u + 1
a
4
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
9
=
u
11
+ 4u
9
2u
8
6u
7
+ 6u
6
+ 2u
5
6u
4
+ 3u
3
+ 2u
2
2u
u
11
+ 3u
9
2u
8
2u
7
+ 4u
6
3u
5
+ 3u
3
2u
2
+ u 2
a
9
=
u
11
+ 4u
9
2u
8
6u
7
+ 6u
6
+ 2u
5
6u
4
+ 3u
3
+ 2u
2
2u
u
11
+ 3u
9
2u
8
2u
7
+ 4u
6
3u
5
+ 3u
3
2u
2
+ u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
+ 12u
6
4u
5
8u
4
+ 8u
3
4u
2
10
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
u
12
u
11
4u
10
+ 2u
9
+ 7u
8
+ u
7
5u
6
5u
5
u
4
+ 3u
3
+ 2u
2
+ 1
c
3
, c
8
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
c
4
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
y
12
9y
11
+ ··· + 4y + 1
c
3
, c
8
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
c
4
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.895235 + 0.524661I
a = 0.831450 + 0.487279I
b = 1.323480 + 0.139870I
5.18047 + 0.92430I 15.7167 0.7942I
u = 0.895235 0.524661I
a = 0.831450 0.487279I
b = 1.323480 0.139870I
5.18047 0.92430I 15.7167 + 0.7942I
u = 0.282166 + 0.828798I
a = 0.368111 + 1.081240I
b = 1.356120 0.270046I
3.28987 5.69302I 12.00000 + 5.51057I
u = 0.282166 0.828798I
a = 0.368111 1.081240I
b = 1.356120 + 0.270046I
3.28987 + 5.69302I 12.00000 5.51057I
u = 1.155020 + 0.191936I
a = 0.842520 + 0.140006I
b = 0.152828 0.487477I
1.39926 0.92430I 8.28328 + 0.79423I
u = 1.155020 0.191936I
a = 0.842520 0.140006I
b = 0.152828 + 0.487477I
1.39926 + 0.92430I 8.28328 0.79423I
u = 1.323480 + 0.139870I
a = 0.747239 + 0.078971I
b = 0.895235 + 0.524661I
5.18047 + 0.92430I 15.7167 0.7942I
u = 1.323480 0.139870I
a = 0.747239 0.078971I
b = 0.895235 0.524661I
5.18047 0.92430I 15.7167 + 0.7942I
u = 1.356120 + 0.270046I
a = 0.709275 + 0.141239I
b = 0.282166 0.828798I
3.28987 + 5.69302I 12.00000 5.51057I
u = 1.356120 0.270046I
a = 0.709275 0.141239I
b = 0.282166 + 0.828798I
3.28987 5.69302I 12.00000 + 5.51057I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.152828 + 0.487477I
a = 0.58557 + 1.86780I
b = 1.155020 0.191936I
1.39926 + 0.92430I 8.28328 0.79423I
u = 0.152828 0.487477I
a = 0.58557 1.86780I
b = 1.155020 + 0.191936I
1.39926 0.92430I 8.28328 + 0.79423I
10
III. I
u
3
= hb + 1, a + 1, u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
1
a
2
=
1
1
a
6
=
1
0
a
3
=
0
1
a
7
=
1
1
a
8
=
0
1
a
4
=
0
1
a
9
=
0
1
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u 1
c
3
, c
4
, c
8
u
c
5
, c
9
u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
y 1
c
3
, c
4
, c
8
y
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
3.28987 12.0000
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
(u 1)(u
8
u
7
4u
6
+ 3u
5
+ 5u
4
u
3
u
2
3u 1)
· (u
12
u
11
4u
10
+ 2u
9
+ 7u
8
+ u
7
5u
6
5u
5
u
4
+ 3u
3
+ 2u
2
+ 1)
c
3
, c
8
u(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
· (u
8
3u
7
+ 3u
6
+ 2u
5
8u
4
+ 9u
3
3u
2
2u + 2)
c
4
u(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
2
· (u
8
+ 3u
7
+ 5u
6
+ 4u
5
+ 2u
4
+ 13u
3
+ 13u
2
+ 16u + 4)
c
5
, c
9
(u + 1)(u
8
u
7
4u
6
+ 3u
5
+ 5u
4
u
3
u
2
3u 1)
· (u
12
u
11
4u
10
+ 2u
9
+ 7u
8
+ u
7
5u
6
5u
5
u
4
+ 3u
3
+ 2u
2
+ 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
7
, c
9
(y 1)(y
8
9y
7
+ 32y
6
53y
5
+ 31y
4
+ 15y
3
15y
2
7y + 1)
· (y
12
9y
11
+ ··· + 4y + 1)
c
3
, c
8
y(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
8
3y
7
+ 5y
6
4y
5
+ 2y
4
13y
3
+ 13y
2
16y + 4)
c
4
y(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
· (y
8
+ y
7
+ 5y
6
48y
5
58y
4
205y
3
231y
2
152y + 16)
16