11a
271
(K11a
271
)
A knot diagram
1
Linearized knot diagam
10 9 1 7 2 3 11 5 6 8 4
Solving Sequence
4,11
1
3,8
7 5 6 10 2 9
c
11
c
3
c
7
c
4
c
6
c
10
c
1
c
9
c
2
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 1787419727u
22
+ 404361799u
21
+ ··· + 1141379489a 6968741388,
u
23
+ 10u
21
+ ··· + 6u + 1i
I
u
2
= h−8.66938 × 10
235
u
81
4.61286 × 10
236
u
80
+ ··· + 7.40850 × 10
236
b 6.46383 × 10
238
,
4.79729 × 10
238
u
81
+ 3.73078 × 10
239
u
80
+ ··· + 4.31916 × 10
239
a + 1.02668 × 10
242
,
u
82
+ 4u
81
+ ··· + 1581u + 583i
I
u
3
= hb + u, 2u
7
+ u
6
6u
5
+ u
4
6u
3
+ a, u
8
u
7
+ 4u
6
3u
5
+ 6u
4
4u
3
+ 3u
2
2u + 1i
I
u
4
= h12u
9
27u
8
+ 100u
7
154u
6
+ 247u
5
252u
4
+ 225u
3
149u
2
+ b + 59u 16,
u
9
+ 3u
8
11u
7
+ 21u
6
37u
5
+ 45u
4
46u
3
+ 34u
2
+ a 18u + 6,
u
10
3u
9
+ 10u
8
19u
7
+ 30u
6
36u
5
+ 34u
4
26u
3
+ 14u
2
5u + 1i
I
u
5
= hb + u, a u + 1, u
2
u + 1i
* 5 irreducible components of dim
C
= 0, with total 125 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 1.79 × 10
9
u
22
+ 4.04 × 10
8
u
21
+ · · · + 1.14 × 10
9
a 6.97 ×
10
9
, u
23
+ 10u
21
+ · · · + 6u + 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
1.56602u
22
0.354275u
21
+ ··· + 5.26162u + 6.10554
u
a
7
=
1.56602u
22
0.354275u
21
+ ··· + 6.26162u + 6.10554
u
a
5
=
0.0100717u
22
0.0618659u
21
+ ··· + 9.45541u + 7.55747
0.474519u
22
+ 0.0483773u
21
+ ··· + 0.440369u 0.354275
a
6
=
1.43020u
22
0.552730u
21
+ ··· + 4.93721u + 5.70289
0.0398045u
22
+ 0.0200600u
21
+ ··· + 1.00214u 0.204197
a
10
=
0.354275u
22
+ 0.474519u
21
+ ··· + 3.29056u + 2.56602
u
2
a
2
=
0.515155u
22
+ 1.53719u
21
+ ··· + 7.98960u + 2.53517
0.246833u
22
0.706353u
21
+ ··· 3.61365u 0.610339
a
9
=
1.76578u
22
+ 0.872515u
21
+ ··· + 0.752076u 1.55408
0.528715u
22
0.182288u
21
+ ··· + 0.732677u + 0.346273
a
9
=
1.76578u
22
+ 0.872515u
21
+ ··· + 0.752076u 1.55408
0.528715u
22
0.182288u
21
+ ··· + 0.732677u + 0.346273
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1113912392
1141379489
u
22
+
1733888615
1141379489
u
21
+ ··· +
15405030005
1141379489
u +
4456929967
1141379489
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
+ 22u
22
+ ··· + 7424u + 512
c
2
u
23
+ 19u
22
+ ··· 96u 16
c
3
, c
7
, c
10
c
11
u
23
+ 10u
21
+ ··· + 6u + 1
c
4
u
23
19u
22
+ ··· 960u + 256
c
5
, c
9
u
23
u
22
+ ··· u + 1
c
6
, c
8
u
23
u
22
+ ··· + 4u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
2y
22
+ ··· + 11599872y 262144
c
2
y
23
5y
22
+ ··· 6016y 256
c
3
, c
7
, c
10
c
11
y
23
+ 20y
22
+ ··· + 20y 1
c
4
y
23
7y
22
+ ··· + 1011712y 65536
c
5
, c
9
y
23
3y
22
+ ··· 3y 1
c
6
, c
8
y
23
9y
22
+ ··· + 80y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.097203 + 1.048750I
a = 0.88581 3.73190I
b = 0.097203 + 1.048750I
0.41923 7.68149I 2.73500 + 7.62634I
u = 0.097203 1.048750I
a = 0.88581 + 3.73190I
b = 0.097203 1.048750I
0.41923 + 7.68149I 2.73500 7.62634I
u = 0.878283 + 0.234924I
a = 0.069448 0.504553I
b = 0.878283 + 0.234924I
4.00620 + 1.06800I 20.0904 5.7474I
u = 0.878283 0.234924I
a = 0.069448 + 0.504553I
b = 0.878283 0.234924I
4.00620 1.06800I 20.0904 + 5.7474I
u = 0.832612 + 0.199739I
a = 0.269970 0.994841I
b = 0.832612 + 0.199739I
4.74103 + 7.77621I 9.99957 4.77400I
u = 0.832612 0.199739I
a = 0.269970 + 0.994841I
b = 0.832612 0.199739I
4.74103 7.77621I 9.99957 + 4.77400I
u = 0.086667 + 1.177120I
a = 0.91809 1.64121I
b = 0.086667 + 1.177120I
4.82355 + 1.72572I 1.86379 3.16589I
u = 0.086667 1.177120I
a = 0.91809 + 1.64121I
b = 0.086667 1.177120I
4.82355 1.72572I 1.86379 + 3.16589I
u = 0.485747 + 0.587883I
a = 0.867752 + 0.473235I
b = 0.485747 + 0.587883I
1.41194 + 2.54862I 8.72632 1.31178I
u = 0.485747 0.587883I
a = 0.867752 0.473235I
b = 0.485747 0.587883I
1.41194 2.54862I 8.72632 + 1.31178I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.332148 + 1.312160I
a = 1.15057 2.08899I
b = 0.332148 + 1.312160I
6.09809 + 8.12392I 3.40597 8.83423I
u = 0.332148 1.312160I
a = 1.15057 + 2.08899I
b = 0.332148 1.312160I
6.09809 8.12392I 3.40597 + 8.83423I
u = 0.33824 + 1.37393I
a = 0.69111 1.66289I
b = 0.33824 + 1.37393I
9.61085 2.02294I 3.47785 + 0.15643I
u = 0.33824 1.37393I
a = 0.69111 + 1.66289I
b = 0.33824 1.37393I
9.61085 + 2.02294I 3.47785 0.15643I
u = 0.25671 + 1.41656I
a = 0.16528 1.74879I
b = 0.25671 + 1.41656I
6.46756 + 3.72990I 2.37255 3.19850I
u = 0.25671 1.41656I
a = 0.16528 + 1.74879I
b = 0.25671 1.41656I
6.46756 3.72990I 2.37255 + 3.19850I
u = 0.50959 + 1.43123I
a = 0.44449 1.89615I
b = 0.50959 + 1.43123I
3.75645 + 9.55892I 6.8688 15.7902I
u = 0.50959 1.43123I
a = 0.44449 + 1.89615I
b = 0.50959 1.43123I
3.75645 9.55892I 6.8688 + 15.7902I
u = 0.56914 + 1.42280I
a = 0.59171 1.70238I
b = 0.56914 + 1.42280I
3.0635 18.7890I 2.94689 + 9.73353I
u = 0.56914 1.42280I
a = 0.59171 + 1.70238I
b = 0.56914 1.42280I
3.0635 + 18.7890I 2.94689 9.73353I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.329226 + 0.326454I
a = 1.012200 + 0.058405I
b = 0.329226 + 0.326454I
0.744276 + 1.012620I 5.79242 5.25340I
u = 0.329226 0.326454I
a = 1.012200 0.058405I
b = 0.329226 0.326454I
0.744276 1.012620I 5.79242 + 5.25340I
u = 0.207295
a = 5.72955
b = 0.207295
2.25842 3.07840
7
II. I
u
2
= h−8.67 × 10
235
u
81
4.61 × 10
236
u
80
+ · · · + 7.41 × 10
236
b 6.46 ×
10
238
, 4.80 × 10
238
u
81
+ 3.73 × 10
239
u
80
+ · · · + 4.32 × 10
239
a + 1.03 ×
10
242
, u
82
+ 4u
81
+ · · · + 1581u + 583i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
0.111070u
81
0.863775u
80
+ ··· 708.703u 237.704
0.117019u
81
+ 0.622644u
80
+ ··· + 301.616u + 87.2488
a
7
=
0.00594924u
81
0.241131u
80
+ ··· 407.086u 150.455
0.117019u
81
+ 0.622644u
80
+ ··· + 301.616u + 87.2488
a
5
=
0.219221u
81
1.23505u
80
+ ··· 634.131u 201.913
0.150861u
81
+ 0.982201u
80
+ ··· + 631.616u + 195.251
a
6
=
0.133406u
81
0.938320u
80
+ ··· 706.882u 233.890
0.131216u
81
+ 0.674433u
80
+ ··· + 304.040u + 85.3005
a
10
=
0.344459u
81
1.29164u
80
+ ··· 52.0179u + 50.8287
0.00955082u
81
+ 0.102874u
80
+ ··· + 152.659u + 51.2985
a
2
=
0.605273u
81
2.16854u
80
+ ··· + 61.9906u + 135.141
0.382816u
81
+ 1.45114u
80
+ ··· + 16.4038u 62.7682
a
9
=
0.344825u
81
1.48129u
80
+ ··· 184.980u 9.26806
0.138777u
81
+ 0.708851u
80
+ ··· + 267.957u + 70.7972
a
9
=
0.344825u
81
1.48129u
80
+ ··· 184.980u 9.26806
0.138777u
81
+ 0.708851u
80
+ ··· + 267.957u + 70.7972
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.557208u
81
+ 1.61916u
80
+ ··· 644.455u 351.850
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
41
7u
40
+ ··· 13u + 1)
2
c
2
(u
41
8u
40
+ ··· + 2u 1)
2
c
3
, c
7
, c
10
c
11
u
82
+ 4u
81
+ ··· + 1581u + 583
c
4
(u
41
+ 11u
40
+ ··· + 92u + 11)
2
c
5
, c
9
u
82
5u
81
+ ··· + 61u + 11
c
6
, c
8
u
82
+ u
81
+ ··· 5311u + 961
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
41
+ 11y
40
+ ··· + 9y 1)
2
c
2
(y
41
8y
40
+ ··· + 30y 1)
2
c
3
, c
7
, c
10
c
11
y
82
+ 58y
81
+ ··· + 8444515y + 339889
c
4
(y
41
+ 13y
40
+ ··· 1898y 121)
2
c
5
, c
9
y
82
+ 13y
81
+ ··· + 6949y + 121
c
6
, c
8
y
82
31y
81
+ ··· 8782989y + 923521
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.201433 + 0.974457I
a = 0.24847 2.21630I
b = 0.50859 + 1.75201I
2.07268 + 5.10749I 0
u = 0.201433 0.974457I
a = 0.24847 + 2.21630I
b = 0.50859 1.75201I
2.07268 5.10749I 0
u = 0.766022 + 0.674504I
a = 0.802065 + 0.258031I
b = 0.411623 1.052910I
0.21627 + 5.92950I 0
u = 0.766022 0.674504I
a = 0.802065 0.258031I
b = 0.411623 + 1.052910I
0.21627 5.92950I 0
u = 0.046473 + 1.022060I
a = 0.0453885 0.0654803I
b = 0.908235 + 0.579105I
0.195730 0.062095I 0
u = 0.046473 1.022060I
a = 0.0453885 + 0.0654803I
b = 0.908235 0.579105I
0.195730 + 0.062095I 0
u = 0.481687 + 0.914453I
a = 0.952194 0.769085I
b = 0.104564 0.731487I
0.53309 6.66067I 0
u = 0.481687 0.914453I
a = 0.952194 + 0.769085I
b = 0.104564 + 0.731487I
0.53309 + 6.66067I 0
u = 0.084502 + 0.953123I
a = 0.27716 + 3.12610I
b = 0.084502 0.953123I
1.00058 0
u = 0.084502 0.953123I
a = 0.27716 3.12610I
b = 0.084502 + 0.953123I
1.00058 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.908053 + 0.267502I
a = 0.122614 0.116976I
b = 0.436052 + 1.232410I
0.05211 + 4.45406I 0
u = 0.908053 0.267502I
a = 0.122614 + 0.116976I
b = 0.436052 1.232410I
0.05211 4.45406I 0
u = 0.356623 + 0.993352I
a = 0.318656 + 0.614201I
b = 1.239790 0.228596I
1.92162 3.53381I 0
u = 0.356623 0.993352I
a = 0.318656 0.614201I
b = 1.239790 + 0.228596I
1.92162 + 3.53381I 0
u = 0.908235 + 0.579105I
a = 0.0324041 0.0683877I
b = 0.046473 + 1.022060I
0.195730 0.062095I 0
u = 0.908235 0.579105I
a = 0.0324041 + 0.0683877I
b = 0.046473 1.022060I
0.195730 + 0.062095I 0
u = 0.068284 + 1.081370I
a = 0.96185 + 2.05879I
b = 0.42203 1.39285I
5.03352 3.32205I 0
u = 0.068284 1.081370I
a = 0.96185 2.05879I
b = 0.42203 + 1.39285I
5.03352 + 3.32205I 0
u = 0.333019 + 1.053950I
a = 0.318558 + 0.572725I
b = 0.818658 0.168076I
0.116913 + 1.387900I 0
u = 0.333019 1.053950I
a = 0.318558 0.572725I
b = 0.818658 + 0.168076I
0.116913 1.387900I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.044484 + 1.105450I
a = 0.10256 + 2.32484I
b = 0.46839 1.96413I
3.54374 4.65960I 0
u = 0.044484 1.105450I
a = 0.10256 2.32484I
b = 0.46839 + 1.96413I
3.54374 + 4.65960I 0
u = 0.133627 + 1.121670I
a = 0.10313 + 2.45385I
b = 0.49419 1.57359I
2.42232 4.46231I 0
u = 0.133627 1.121670I
a = 0.10313 2.45385I
b = 0.49419 + 1.57359I
2.42232 + 4.46231I 0
u = 0.411623 + 1.052910I
a = 0.536788 + 0.538970I
b = 0.766022 0.674504I
0.21627 5.92950I 0
u = 0.411623 1.052910I
a = 0.536788 0.538970I
b = 0.766022 + 0.674504I
0.21627 + 5.92950I 0
u = 1.124920 + 0.275824I
a = 0.110405 0.794266I
b = 0.461170 + 1.076770I
1.45360 + 3.78207I 0
u = 1.124920 0.275824I
a = 0.110405 + 0.794266I
b = 0.461170 1.076770I
1.45360 3.78207I 0
u = 0.818658 + 0.168076I
a = 0.796957 + 0.340759I
b = 0.333019 1.053950I
0.116913 1.387900I 6.84622 + 0.I
u = 0.818658 0.168076I
a = 0.796957 0.340759I
b = 0.333019 + 1.053950I
0.116913 + 1.387900I 6.84622 + 0.I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.538479 + 0.638550I
a = 1.065560 0.578549I
b = 0.039429 + 1.208320I
3.80604 + 1.84265I 2.21456 1.42669I
u = 0.538479 0.638550I
a = 1.065560 + 0.578549I
b = 0.039429 1.208320I
3.80604 1.84265I 2.21456 + 1.42669I
u = 0.461170 + 1.076770I
a = 0.561893 0.559451I
b = 1.124920 + 0.275824I
1.45360 + 3.78207I 0
u = 0.461170 1.076770I
a = 0.561893 + 0.559451I
b = 1.124920 0.275824I
1.45360 3.78207I 0
u = 0.807717 + 0.141453I
a = 0.769334 + 1.182630I
b = 0.510395 0.521903I
3.37975 + 0.08879I 21.5224 1.1280I
u = 0.807717 0.141453I
a = 0.769334 1.182630I
b = 0.510395 + 0.521903I
3.37975 0.08879I 21.5224 + 1.1280I
u = 0.569473 + 1.050610I
a = 0.135587 0.282589I
b = 0.193727 + 0.290248I
0.05619 + 2.96133I 0
u = 0.569473 1.050610I
a = 0.135587 + 0.282589I
b = 0.193727 0.290248I
0.05619 2.96133I 0
u = 0.039429 + 1.208320I
a = 0.279515 0.789725I
b = 0.538479 + 0.638550I
3.80604 + 1.84265I 0
u = 0.039429 1.208320I
a = 0.279515 + 0.789725I
b = 0.538479 0.638550I
3.80604 1.84265I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.000352 + 1.222750I
a = 0.431347 0.869500I
b = 1.142370 + 0.747319I
3.71714 + 2.02101I 0
u = 0.000352 1.222750I
a = 0.431347 + 0.869500I
b = 1.142370 0.747319I
3.71714 2.02101I 0
u = 0.543339 + 0.521380I
a = 0.469132 + 0.978730I
b = 0.290957 + 0.592426I
1.39039 + 1.97007I 9.76462 4.48787I
u = 0.543339 0.521380I
a = 0.469132 0.978730I
b = 0.290957 0.592426I
1.39039 1.97007I 9.76462 + 4.48787I
u = 1.239790 + 0.228596I
a = 0.310254 + 0.489196I
b = 0.356623 0.993352I
1.92162 + 3.53381I 0
u = 1.239790 0.228596I
a = 0.310254 0.489196I
b = 0.356623 + 0.993352I
1.92162 3.53381I 0
u = 0.104564 + 0.731487I
a = 1.70968 0.09004I
b = 0.481687 0.914453I
0.53309 + 6.66067I 5.50818 4.99627I
u = 0.104564 0.731487I
a = 1.70968 + 0.09004I
b = 0.481687 + 0.914453I
0.53309 6.66067I 5.50818 + 4.99627I
u = 0.510395 + 0.521903I
a = 0.07356 + 1.58312I
b = 0.807717 0.141453I
3.37975 0.08879I 21.5224 + 1.1280I
u = 0.510395 0.521903I
a = 0.07356 1.58312I
b = 0.807717 + 0.141453I
3.37975 + 0.08879I 21.5224 1.1280I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.277090 + 0.069235I
a = 0.128263 0.568984I
b = 0.442168 + 1.200420I
1.61991 12.41910I 0
u = 1.277090 0.069235I
a = 0.128263 + 0.568984I
b = 0.442168 1.200420I
1.61991 + 12.41910I 0
u = 0.442168 + 1.200420I
a = 0.471592 0.342980I
b = 1.277090 + 0.069235I
1.61991 12.41910I 0
u = 0.442168 1.200420I
a = 0.471592 + 0.342980I
b = 1.277090 0.069235I
1.61991 + 12.41910I 0
u = 0.436052 + 1.232410I
a = 0.0893396 0.0841235I
b = 0.908053 + 0.267502I
0.05211 + 4.45406I 0
u = 0.436052 1.232410I
a = 0.0893396 + 0.0841235I
b = 0.908053 0.267502I
0.05211 4.45406I 0
u = 0.290957 + 0.592426I
a = 1.226410 0.171231I
b = 0.543339 + 0.521380I
1.39039 + 1.97007I 9.76462 4.48787I
u = 0.290957 0.592426I
a = 1.226410 + 0.171231I
b = 0.543339 0.521380I
1.39039 1.97007I 9.76462 + 4.48787I
u = 1.142370 + 0.747319I
a = 0.440460 0.749568I
b = 0.000352 + 1.222750I
3.71714 + 2.02101I 0
u = 1.142370 0.747319I
a = 0.440460 + 0.749568I
b = 0.000352 1.222750I
3.71714 2.02101I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.156685 + 1.358810I
a = 0.101736 0.810141I
b = 0.402062 + 0.251568I
1.45241 + 4.98872I 0
u = 0.156685 1.358810I
a = 0.101736 + 0.810141I
b = 0.402062 0.251568I
1.45241 4.98872I 0
u = 0.542295 + 1.256440I
a = 0.73459 + 1.65323I
b = 0.56332 1.44907I
3.20535 9.84080I 0
u = 0.542295 1.256440I
a = 0.73459 1.65323I
b = 0.56332 + 1.44907I
3.20535 + 9.84080I 0
u = 0.27459 + 1.42022I
a = 0.24594 + 1.64727I
b = 0.68951 1.38477I
6.68388 + 9.32368I 0
u = 0.27459 1.42022I
a = 0.24594 1.64727I
b = 0.68951 + 1.38477I
6.68388 9.32368I 0
u = 0.42203 + 1.39285I
a = 1.04819 + 1.32794I
b = 0.068284 1.081370I
5.03352 + 3.32205I 0
u = 0.42203 1.39285I
a = 1.04819 1.32794I
b = 0.068284 + 1.081370I
5.03352 3.32205I 0
u = 0.402062 + 0.251568I
a = 2.00877 1.22876I
b = 0.156685 + 1.358810I
1.45241 + 4.98872I 4.83358 8.14945I
u = 0.402062 0.251568I
a = 2.00877 + 1.22876I
b = 0.156685 1.358810I
1.45241 4.98872I 4.83358 + 8.14945I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.68951 + 1.38477I
a = 0.63393 + 1.42256I
b = 0.27459 1.42022I
6.68388 9.32368I 0
u = 0.68951 1.38477I
a = 0.63393 1.42256I
b = 0.27459 + 1.42022I
6.68388 + 9.32368I 0
u = 0.56332 + 1.44907I
a = 0.59277 + 1.47793I
b = 0.542295 1.256440I
3.20535 + 9.84080I 0
u = 0.56332 1.44907I
a = 0.59277 1.47793I
b = 0.542295 + 1.256440I
3.20535 9.84080I 0
u = 0.49419 + 1.57359I
a = 0.37975 + 1.63862I
b = 0.133627 1.121670I
2.42232 + 4.46231I 0
u = 0.49419 1.57359I
a = 0.37975 1.63862I
b = 0.133627 + 1.121670I
2.42232 4.46231I 0
u = 0.193727 + 0.290248I
a = 1.072570 0.040966I
b = 0.569473 + 1.050610I
0.05619 + 2.96133I 4.67276 + 2.55942I
u = 0.193727 0.290248I
a = 1.072570 + 0.040966I
b = 0.569473 1.050610I
0.05619 2.96133I 4.67276 2.55942I
u = 0.50859 + 1.75201I
a = 0.230119 1.194450I
b = 0.201433 + 0.974457I
2.07268 + 5.10749I 0
u = 0.50859 1.75201I
a = 0.230119 + 1.194450I
b = 0.201433 0.974457I
2.07268 5.10749I 0
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.46839 + 1.96413I
a = 0.290971 + 1.241400I
b = 0.044484 1.105450I
3.54374 + 4.65960I 0
u = 0.46839 1.96413I
a = 0.290971 1.241400I
b = 0.044484 + 1.105450I
3.54374 4.65960I 0
19
III. I
u
3
= hb + u, 2u
7
+ u
6
6u
5
+ u
4
6u
3
+ a, u
8
u
7
+ · · · 2u + 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
2u
7
u
6
+ 6u
5
u
4
+ 6u
3
u
a
7
=
2u
7
u
6
+ 6u
5
u
4
+ 6u
3
u
u
a
5
=
2u
7
+ 3u
6
7u
5
+ 7u
4
6u
3
+ 5u
2
+ 2u 3
u
7
+ u
6
3u
5
+ 2u
4
3u
3
+ u
2
+ u 1
a
6
=
2u
7
u
6
+ 6u
5
+ 5u
3
+ 2u
2
2u + 1
u
6
u
5
+ 3u
4
2u
3
+ 3u
2
2u + 1
a
10
=
u
7
2u
6
+ 5u
5
6u
4
+ 8u
3
6u
2
+ 4u 1
u
2
a
2
=
u
7
+ u
6
+ 6u
4
5u
3
+ 9u
2
8u + 4
u
4
u
3
+ 3u
2
2u + 1
a
9
=
2u
7
+ u
6
6u
5
+ u
4
5u
3
u
2
+ 3u 2
u
7
+ u
6
3u
5
+ u
4
2u
3
u
2
+ u 1
a
9
=
2u
7
+ u
6
6u
5
+ u
4
5u
3
u
2
+ 3u 2
u
7
+ u
6
3u
5
+ u
4
2u
3
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
7
+ 2u
6
+ 13u
5
+ 14u
4
+ 6u
3
+ 18u
2
11u 3
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
2u
7
+ 4u
6
+ 2u
5
+ 6u
4
10u
3
+ 6u
2
3u + 1
c
2
u
8
2u
7
+ u
6
+ 2u
5
3u
3
+ u
2
+ 3u + 1
c
3
, c
10
u
8
+ u
7
+ 4u
6
+ 3u
5
+ 6u
4
+ 4u
3
+ 3u
2
+ 2u + 1
c
4
u
8
u
7
u
6
+ 18u
4
43u
3
+ 40u
2
18u + 5
c
5
, c
9
u
8
+ 2u
7
+ 2u
6
+ u
5
+ 4u
4
+ 4u
3
+ u
2
+ u + 1
c
6
, c
8
u
8
+ u
7
2u
6
u
5
+ 5u
4
+ 2u
3
5u
2
+ 4
c
7
, c
11
u
8
u
7
+ 4u
6
3u
5
+ 6u
4
4u
3
+ 3u
2
2u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
+ 4y
7
+ 36y
6
+ 16y
5
+ 114y
4
8y
3
12y
2
+ 3y + 1
c
2
y
8
2y
7
+ 9y
6
14y
5
+ 28y
4
19y
3
+ 19y
2
7y + 1
c
3
, c
7
, c
10
c
11
y
8
+ 7y
7
+ 22y
6
+ 37y
5
+ 34y
4
+ 16y
3
+ 5y
2
+ 2y + 1
c
4
y
8
3y
7
+ 37y
6
42y
5
+ 218y
4
419y
3
+ 232y
2
+ 76y + 25
c
5
, c
9
y
8
+ 8y
6
+ y
5
+ 10y
4
6y
3
+ y
2
+ y + 1
c
6
, c
8
y
8
5y
7
+ 16y
6
35y
5
+ 57y
4
70y
3
+ 65y
2
40y + 16
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.269479 + 0.786257I
a = 0.66386 1.86952I
b = 0.269479 0.786257I
0.83890 + 7.80261I 8.9851 11.5999I
u = 0.269479 0.786257I
a = 0.66386 + 1.86952I
b = 0.269479 + 0.786257I
0.83890 7.80261I 8.9851 + 11.5999I
u = 0.277017 + 1.255050I
a = 0.108092 + 1.358300I
b = 0.277017 1.255050I
2.76768 3.32852I 2.54114 + 3.52732I
u = 0.277017 1.255050I
a = 0.108092 1.358300I
b = 0.277017 + 1.255050I
2.76768 + 3.32852I 2.54114 3.52732I
u = 0.540306 + 0.341888I
a = 0.68710 + 1.58291I
b = 0.540306 0.341888I
2.72625 0.35304I 9.09708 + 6.47245I
u = 0.540306 0.341888I
a = 0.68710 1.58291I
b = 0.540306 + 0.341888I
2.72625 + 0.35304I 9.09708 6.47245I
u = 0.50619 + 1.37378I
a = 0.58486 + 1.70906I
b = 0.50619 1.37378I
4.08734 8.79857I 1.87665 + 4.90674I
u = 0.50619 1.37378I
a = 0.58486 1.70906I
b = 0.50619 + 1.37378I
4.08734 + 8.79857I 1.87665 4.90674I
23
IV.
I
u
4
= h12u
9
27u
8
+· · ·+b16, u
9
+3u
8
+· · ·+a+6, u
10
3u
9
+· · ·5u+1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
9
3u
8
+ 11u
7
21u
6
+ 37u
5
45u
4
+ 46u
3
34u
2
+ 18u 6
12u
9
+ 27u
8
+ ··· 59u + 16
a
7
=
11u
9
+ 24u
8
+ ··· 41u + 10
12u
9
+ 27u
8
+ ··· 59u + 16
a
5
=
15u
9
+ 33u
8
+ ··· 57u + 14
12u
9
+ 27u
8
+ ··· 54u + 15
a
6
=
9u
9
+ 19u
8
+ ··· 26u + 6
9u
9
+ 20u
8
+ ··· 41u + 11
a
10
=
3u
9
+ 5u
8
21u
7
+ 25u
6
42u
5
+ 36u
4
34u
3
+ 23u
2
8u + 4
12u
9
+ 28u
8
+ ··· 61u + 17
a
2
=
8u
9
18u
8
+ ··· + 37u 10
17u
9
38u
8
+ ··· + 82u 23
a
9
=
13u
9
+ 31u
8
+ ··· 74u + 20
22u
9
+ 51u
8
+ ··· 117u + 32
a
9
=
13u
9
+ 31u
8
+ ··· 74u + 20
22u
9
+ 51u
8
+ ··· 117u + 32
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 54u
9
118u
8
+ 444u
7
672u
6
+ 1090u
5
1110u
4
+ 1006u
3
674u
2
+ 274u 89
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
u
3
+ u
2
+ u 1)
2
c
2
(u
5
+ 2u
4
3u
2
+ 1)
2
c
3
, c
10
u
10
+ 3u
9
+ ··· + 5u + 1
c
4
(u
5
u
4
u
3
+ u
2
1)
2
c
5
, c
9
u
10
2u
9
+ 3u
8
3u
7
+ 5u
6
6u
5
+ 3u
4
3u
3
+ 3u
2
u + 1
c
6
, c
8
u
10
2u
9
3u
8
+ 4u
7
+ 7u
6
u
5
7u
4
4u
3
+ 2u
2
+ 3u + 1
c
7
, c
11
u
10
3u
9
+ ··· 5u + 1
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
2y
4
+ 3y
3
3y
2
+ 3y 1)
2
c
2
(y
5
4y
4
+ 12y
3
13y
2
+ 6y 1)
2
c
3
, c
7
, c
10
c
11
y
10
+ 11y
9
+ 46y
8
+ 91y
7
+ 84y
6
+ 8y
5
46y
4
24y
3
+ 4y
2
+ 3y + 1
c
4
(y
5
3y
4
+ 3y
3
3y
2
+ 2y 1)
2
c
5
, c
9
y
10
+ 2y
9
+ 7y
8
+ 3y
7
+ y
6
8y
5
+ 3y
4
+ 7y
3
+ 9y
2
+ 5y + 1
c
6
, c
8
y
10
10y
9
+ ··· 5y + 1
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.109909 + 1.074360I
a = 0.19447 2.65794I
b = 0.18082 + 1.92265I
3.01018 + 5.17259I 0.22749 12.15389I
u = 0.109909 1.074360I
a = 0.19447 + 2.65794I
b = 0.18082 1.92265I
3.01018 5.17259I 0.22749 + 12.15389I
u = 0.449269 + 1.114270I
a = 0.015790 + 0.270852I
b = 0.719851 0.020388I
0.29233 3.70382I 8.25691 + 5.45417I
u = 0.449269 1.114270I
a = 0.015790 0.270852I
b = 0.719851 + 0.020388I
0.29233 + 3.70382I 8.25691 5.45417I
u = 0.719851 + 0.020388I
a = 0.424674 + 0.156629I
b = 0.449269 1.114270I
0.29233 3.70382I 8.25691 + 5.45417I
u = 0.719851 0.020388I
a = 0.424674 0.156629I
b = 0.449269 + 1.114270I
0.29233 + 3.70382I 8.25691 5.45417I
u = 0.259964 + 0.489435I
a = 0.96167 + 1.81054I
b = 0.259964 + 0.489435I
2.14584 12.94116 + 0.I
u = 0.259964 0.489435I
a = 0.96167 1.81054I
b = 0.259964 0.489435I
2.14584 12.94116 + 0.I
u = 0.18082 + 1.92265I
a = 0.09660 1.48727I
b = 0.109909 + 1.074360I
3.01018 5.17259I 0.22749 + 12.15389I
u = 0.18082 1.92265I
a = 0.09660 + 1.48727I
b = 0.109909 1.074360I
3.01018 + 5.17259I 0.22749 12.15389I
27
V. I
u
5
= hb + u, a u + 1, u
2
u + 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
1
=
1
u 1
a
3
=
u
u 1
a
8
=
u 1
u
a
7
=
1
u
a
5
=
u
1
a
6
=
1
u
a
10
=
0
u + 1
a
2
=
1
2u 1
a
9
=
u 1
u
a
9
=
u 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 10
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
7
, c
9
, c
11
u
2
u + 1
c
2
(u 1)
2
c
3
, c
10
u
2
+ u + 1
c
6
, c
8
u
2
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
7
, c
9
c
10
, c
11
y
2
+ y + 1
c
2
(y 1)
2
c
6
, c
8
y
2
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
4.05977I 6.00000 + 6.92820I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
4.05977I 6.00000 6.92820I
31
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
5
u
3
+ u
2
+ u 1)
2
· (u
8
2u
7
+ 4u
6
+ 2u
5
+ 6u
4
10u
3
+ 6u
2
3u + 1)
· (u
23
+ 22u
22
+ ··· + 7424u + 512)(u
41
7u
40
+ ··· 13u + 1)
2
c
2
((u 1)
2
)(u
5
+ 2u
4
3u
2
+ 1)
2
(u
8
2u
7
+ ··· + 3u + 1)
· (u
23
+ 19u
22
+ ··· 96u 16)(u
41
8u
40
+ ··· + 2u 1)
2
c
3
, c
10
(u
2
+ u + 1)(u
8
+ u
7
+ 4u
6
+ 3u
5
+ 6u
4
+ 4u
3
+ 3u
2
+ 2u + 1)
· (u
10
+ 3u
9
+ ··· + 5u + 1)(u
23
+ 10u
21
+ ··· + 6u + 1)
· (u
82
+ 4u
81
+ ··· + 1581u + 583)
c
4
(u
2
u + 1)(u
5
u
4
u
3
+ u
2
1)
2
· (u
8
u
7
u
6
+ 18u
4
43u
3
+ 40u
2
18u + 5)
· (u
23
19u
22
+ ··· 960u + 256)(u
41
+ 11u
40
+ ··· + 92u + 11)
2
c
5
, c
9
(u
2
u + 1)(u
8
+ 2u
7
+ 2u
6
+ u
5
+ 4u
4
+ 4u
3
+ u
2
+ u + 1)
· (u
10
2u
9
+ 3u
8
3u
7
+ 5u
6
6u
5
+ 3u
4
3u
3
+ 3u
2
u + 1)
· (u
23
u
22
+ ··· u + 1)(u
82
5u
81
+ ··· + 61u + 11)
c
6
, c
8
u
2
(u
8
+ u
7
2u
6
u
5
+ 5u
4
+ 2u
3
5u
2
+ 4)
· (u
10
2u
9
3u
8
+ 4u
7
+ 7u
6
u
5
7u
4
4u
3
+ 2u
2
+ 3u + 1)
· (u
23
u
22
+ ··· + 4u + 4)(u
82
+ u
81
+ ··· 5311u + 961)
c
7
, c
11
(u
2
u + 1)(u
8
u
7
+ 4u
6
3u
5
+ 6u
4
4u
3
+ 3u
2
2u + 1)
· (u
10
3u
9
+ ··· 5u + 1)(u
23
+ 10u
21
+ ··· + 6u + 1)
· (u
82
+ 4u
81
+ ··· + 1581u + 583)
32
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)(y
5
2y
4
+ 3y
3
3y
2
+ 3y 1)
2
· (y
8
+ 4y
7
+ 36y
6
+ 16y
5
+ 114y
4
8y
3
12y
2
+ 3y + 1)
· (y
23
2y
22
+ ··· + 11599872y 262144)
· (y
41
+ 11y
40
+ ··· + 9y 1)
2
c
2
(y 1)
2
(y
5
4y
4
+ 12y
3
13y
2
+ 6y 1)
2
· (y
8
2y
7
+ 9y
6
14y
5
+ 28y
4
19y
3
+ 19y
2
7y + 1)
· (y
23
5y
22
+ ··· 6016y 256)(y
41
8y
40
+ ··· + 30y 1)
2
c
3
, c
7
, c
10
c
11
(y
2
+ y + 1)(y
8
+ 7y
7
+ 22y
6
+ 37y
5
+ 34y
4
+ 16y
3
+ 5y
2
+ 2y + 1)
· (y
10
+ 11y
9
+ 46y
8
+ 91y
7
+ 84y
6
+ 8y
5
46y
4
24y
3
+ 4y
2
+ 3y + 1)
· (y
23
+ 20y
22
+ ··· + 20y 1)
· (y
82
+ 58y
81
+ ··· + 8444515y + 339889)
c
4
(y
2
+ y + 1)(y
5
3y
4
+ 3y
3
3y
2
+ 2y 1)
2
· (y
8
3y
7
+ 37y
6
42y
5
+ 218y
4
419y
3
+ 232y
2
+ 76y + 25)
· (y
23
7y
22
+ ··· + 1011712y 65536)
· (y
41
+ 13y
40
+ ··· 1898y 121)
2
c
5
, c
9
(y
2
+ y + 1)(y
8
+ 8y
6
+ y
5
+ 10y
4
6y
3
+ y
2
+ y + 1)
· (y
10
+ 2y
9
+ 7y
8
+ 3y
7
+ y
6
8y
5
+ 3y
4
+ 7y
3
+ 9y
2
+ 5y + 1)
· (y
23
3y
22
+ ··· 3y 1)(y
82
+ 13y
81
+ ··· + 6949y + 121)
c
6
, c
8
y
2
(y
8
5y
7
+ 16y
6
35y
5
+ 57y
4
70y
3
+ 65y
2
40y + 16)
· (y
10
10y
9
+ ··· 5y + 1)(y
23
9y
22
+ ··· + 80y 16)
· (y
82
31y
81
+ ··· 8782989y + 923521)
33