11a
275
(K11a
275
)
A knot diagram
1
Linearized knot diagam
5 7 1 10 2 9 3 11 6 4 8
Solving Sequence
6,9 2,7
3 10 5 1 4 11 8
c
6
c
2
c
9
c
5
c
1
c
4
c
10
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.60406 × 10
219
u
79
7.17243 × 10
219
u
78
+ ··· + 4.34238 × 10
220
b 5.34167 × 10
220
,
1.16482 × 10
219
u
79
+ 3.98757 × 10
219
u
78
+ ··· + 4.34238 × 10
220
a 4.56749 × 10
220
,
u
80
+ 4u
79
+ ··· 27u + 34i
I
u
2
= h−6630u
15
+ 14537u
14
+ ··· + 13613b 33108, 5953u
15
4661u
14
+ ··· + 13613a + 59873,
u
16
3u
15
+ ··· + u + 1i
* 2 irreducible components of dim
C
= 0, with total 96 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.60 × 10
219
u
79
7.17 × 10
219
u
78
+ · · · + 4.34 × 10
220
b 5.34 ×
10
220
, 1.16 × 10
219
u
79
+ 3.99 × 10
219
u
78
+ · · · + 4.34 × 10
220
a 4.57 ×
10
220
, u
80
+ 4u
79
+ · · · 27u + 34i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
2
=
0.0268244u
79
0.0918292u
78
+ ··· 5.38213u + 1.05184
0.0369397u
79
+ 0.165173u
78
+ ··· + 0.512746u + 1.23013
a
7
=
1
u
2
a
3
=
0.0588440u
79
0.241530u
78
+ ··· 4.56519u 0.704217
0.0522405u
79
+ 0.236004u
78
+ ··· + 1.01761u + 1.96528
a
10
=
u
u
a
5
=
0.0188852u
79
+ 0.0877304u
78
+ ··· + 10.3791u + 0.440251
0.0179480u
79
0.0787893u
78
+ ··· 0.984862u 1.15735
a
1
=
0.00943403u
79
+ 0.0573905u
78
+ ··· 1.31883u + 0.270591
0.0530260u
79
0.228362u
78
+ ··· 1.09682u 1.74483
a
4
=
0.0236248u
79
+ 0.0987805u
78
+ ··· + 10.4875u + 0.263710
0.0226876u
79
0.0898394u
78
+ ··· 1.09319u 0.980806
a
11
=
0.00299351u
79
0.0183881u
78
+ ··· + 8.20270u 3.09923
0.0297591u
79
+ 0.156515u
78
+ ··· 0.945183u + 1.83821
a
8
=
0.0233526u
79
0.108117u
78
+ ··· 10.4317u 0.210530
0.0379355u
79
+ 0.146692u
78
+ ··· + 2.16096u + 0.319527
a
8
=
0.0233526u
79
0.108117u
78
+ ··· 10.4317u 0.210530
0.0379355u
79
+ 0.146692u
78
+ ··· + 2.16096u + 0.319527
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0374310u
79
+ 0.158984u
78
+ ··· 4.27920u 10.1108
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
80
+ u
79
+ ··· 6u 1
c
2
, c
7
u
80
u
79
+ ··· + 3416u 3721
c
3
u
80
3u
79
+ ··· + 35212u 5777
c
4
, c
10
u
80
+ 5u
79
+ ··· 306u 527
c
6
, c
9
u
80
4u
79
+ ··· + 27u + 34
c
8
, c
11
u
80
+ 2u
79
+ ··· 181u + 31
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
80
43y
79
+ ··· 4y + 1
c
2
, c
7
y
80
47y
79
+ ··· 72209726y + 13845841
c
3
y
80
25y
79
+ ··· 1723258088y + 33373729
c
4
, c
10
y
80
+ 37y
79
+ ··· + 5061478y + 277729
c
6
, c
9
y
80
+ 46y
79
+ ··· 6577y + 1156
c
8
, c
11
y
80
+ 46y
79
+ ··· 21229y + 961
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.106386 + 1.004750I
a = 1.30657 3.48011I
b = 0.934597 + 0.108810I
1.54698 + 0.32425I 0. + 43.4640I
u = 0.106386 1.004750I
a = 1.30657 + 3.48011I
b = 0.934597 0.108810I
1.54698 0.32425I 0. 43.4640I
u = 0.949052 + 0.351718I
a = 0.026470 0.205607I
b = 1.365600 + 0.175084I
10.27100 4.13973I 15.7867 + 0.I
u = 0.949052 0.351718I
a = 0.026470 + 0.205607I
b = 1.365600 0.175084I
10.27100 + 4.13973I 15.7867 + 0.I
u = 0.962671
a = 0.0366403
b = 1.32951
6.48924 14.1030
u = 0.937397 + 0.161665I
a = 0.920463 0.400431I
b = 0.967920 + 0.489832I
2.35882 5.51067I 9.84350 + 5.87992I
u = 0.937397 0.161665I
a = 0.920463 + 0.400431I
b = 0.967920 0.489832I
2.35882 + 5.51067I 9.84350 5.87992I
u = 0.793127 + 0.690281I
a = 0.518674 + 0.094068I
b = 1.273860 0.525082I
6.89106 + 0.74404I 0
u = 0.793127 0.690281I
a = 0.518674 0.094068I
b = 1.273860 + 0.525082I
6.89106 0.74404I 0
u = 0.659363 + 0.854056I
a = 0.57349 1.44928I
b = 0.199019 + 0.681360I
3.86467 + 5.85230I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.659363 0.854056I
a = 0.57349 + 1.44928I
b = 0.199019 0.681360I
3.86467 5.85230I 0
u = 0.805203 + 0.426514I
a = 1.28132 1.16225I
b = 0.252459 0.114986I
3.58794 + 6.02169I 10.86973 2.67201I
u = 0.805203 0.426514I
a = 1.28132 + 1.16225I
b = 0.252459 + 0.114986I
3.58794 6.02169I 10.86973 + 2.67201I
u = 0.387429 + 1.022610I
a = 0.54036 1.44386I
b = 0.59005 + 1.44645I
3.03457 2.75755I 0
u = 0.387429 1.022610I
a = 0.54036 + 1.44386I
b = 0.59005 1.44645I
3.03457 + 2.75755I 0
u = 0.498626 + 0.991215I
a = 0.201073 + 1.385690I
b = 0.651728 0.201624I
0.84491 2.13326I 0
u = 0.498626 0.991215I
a = 0.201073 1.385690I
b = 0.651728 + 0.201624I
0.84491 + 2.13326I 0
u = 0.775066 + 0.803905I
a = 0.351470 0.336348I
b = 0.684548 0.092570I
0.81827 2.05131I 0
u = 0.775066 0.803905I
a = 0.351470 + 0.336348I
b = 0.684548 + 0.092570I
0.81827 + 2.05131I 0
u = 0.598911 + 0.644725I
a = 0.666718 + 0.938431I
b = 0.468858 0.776453I
4.43027 1.02077I 11.34703 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.598911 0.644725I
a = 0.666718 0.938431I
b = 0.468858 + 0.776453I
4.43027 + 1.02077I 11.34703 + 0.I
u = 0.132414 + 0.853219I
a = 0.07134 1.57906I
b = 0.966164 + 0.359794I
0.328167 + 0.843678I 6.69440 1.81465I
u = 0.132414 0.853219I
a = 0.07134 + 1.57906I
b = 0.966164 0.359794I
0.328167 0.843678I 6.69440 + 1.81465I
u = 1.116250 + 0.229412I
a = 0.099344 + 0.155243I
b = 1.214420 + 0.397022I
2.84331 + 4.24599I 0
u = 1.116250 0.229412I
a = 0.099344 0.155243I
b = 1.214420 0.397022I
2.84331 4.24599I 0
u = 0.431362 + 1.068660I
a = 0.215285 + 1.394890I
b = 1.208240 0.650185I
3.92912 + 5.75666I 0
u = 0.431362 1.068660I
a = 0.215285 1.394890I
b = 1.208240 + 0.650185I
3.92912 5.75666I 0
u = 0.205171 + 0.782039I
a = 0.45788 + 1.43880I
b = 0.046673 0.232573I
1.09182 1.88602I 3.93284 + 6.84227I
u = 0.205171 0.782039I
a = 0.45788 1.43880I
b = 0.046673 + 0.232573I
1.09182 + 1.88602I 3.93284 6.84227I
u = 0.395238 + 1.125030I
a = 1.09528 + 1.30675I
b = 1.221700 0.524298I
5.77402 0.98954I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.395238 1.125030I
a = 1.09528 1.30675I
b = 1.221700 + 0.524298I
5.77402 + 0.98954I 0
u = 0.679537 + 1.008540I
a = 0.05788 1.67451I
b = 1.111850 + 0.790562I
5.89450 + 4.83270I 0
u = 0.679537 1.008540I
a = 0.05788 + 1.67451I
b = 1.111850 0.790562I
5.89450 4.83270I 0
u = 0.085610 + 1.213650I
a = 0.506285 0.982225I
b = 0.400724 + 1.016080I
6.51711 0.28172I 0
u = 0.085610 1.213650I
a = 0.506285 + 0.982225I
b = 0.400724 1.016080I
6.51711 + 0.28172I 0
u = 0.317123 + 0.711899I
a = 0.51685 + 2.64573I
b = 0.038672 1.233930I
1.84806 0.31109I 8.59302 2.40672I
u = 0.317123 0.711899I
a = 0.51685 2.64573I
b = 0.038672 + 1.233930I
1.84806 + 0.31109I 8.59302 + 2.40672I
u = 0.067213 + 0.764941I
a = 1.80505 + 1.83294I
b = 1.099080 0.188046I
2.33888 0.32984I 8.07472 4.98162I
u = 0.067213 0.764941I
a = 1.80505 1.83294I
b = 1.099080 + 0.188046I
2.33888 + 0.32984I 8.07472 + 4.98162I
u = 0.607844 + 0.450538I
a = 0.522201 + 0.024471I
b = 0.220687 0.347615I
0.75850 1.84706I 5.49749 + 3.01488I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.607844 0.450538I
a = 0.522201 0.024471I
b = 0.220687 + 0.347615I
0.75850 + 1.84706I 5.49749 3.01488I
u = 0.482232 + 1.167990I
a = 0.278937 + 1.270480I
b = 0.306276 1.309440I
0.18620 + 9.95806I 0
u = 0.482232 1.167990I
a = 0.278937 1.270480I
b = 0.306276 + 1.309440I
0.18620 9.95806I 0
u = 0.145194 + 0.718422I
a = 0.718273 0.325939I
b = 1.86404 + 0.21206I
7.72237 + 3.39581I 2.62157 5.42993I
u = 0.145194 0.718422I
a = 0.718273 + 0.325939I
b = 1.86404 0.21206I
7.72237 3.39581I 2.62157 + 5.42993I
u = 0.284742 + 1.290950I
a = 0.049100 0.733204I
b = 1.200570 + 0.409251I
0.524621 0.718329I 0
u = 0.284742 1.290950I
a = 0.049100 + 0.733204I
b = 1.200570 0.409251I
0.524621 + 0.718329I 0
u = 0.484484 + 1.248630I
a = 0.139134 1.321260I
b = 1.244740 + 0.562971I
1.63511 10.27850I 0
u = 0.484484 1.248630I
a = 0.139134 + 1.321260I
b = 1.244740 0.562971I
1.63511 + 10.27850I 0
u = 0.693014 + 1.153210I
a = 0.233591 + 0.433958I
b = 1.209870 0.311520I
1.00831 3.62362I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.693014 1.153210I
a = 0.233591 0.433958I
b = 1.209870 + 0.311520I
1.00831 + 3.62362I 0
u = 0.505678 + 1.267990I
a = 0.627794 1.192600I
b = 1.219070 + 0.431198I
2.57891 5.15325I 0
u = 0.505678 1.267990I
a = 0.627794 + 1.192600I
b = 1.219070 0.431198I
2.57891 + 5.15325I 0
u = 0.610191 + 1.221500I
a = 0.43570 + 1.51047I
b = 1.199520 0.436737I
7.51244 + 9.85286I 0
u = 0.610191 1.221500I
a = 0.43570 1.51047I
b = 1.199520 + 0.436737I
7.51244 9.85286I 0
u = 0.204953 + 1.350040I
a = 0.308819 + 0.965842I
b = 0.190591 0.919605I
4.86269 4.86500I 0
u = 0.204953 1.350040I
a = 0.308819 0.965842I
b = 0.190591 + 0.919605I
4.86269 + 4.86500I 0
u = 0.502245 + 0.337110I
a = 0.626882 + 0.952788I
b = 0.728847 + 0.455431I
1.91146 1.96925I 2.72689 + 3.92118I
u = 0.502245 0.337110I
a = 0.626882 0.952788I
b = 0.728847 0.455431I
1.91146 + 1.96925I 2.72689 3.92118I
u = 0.66119 + 1.26252I
a = 0.23631 + 1.39596I
b = 1.33184 0.78181I
0.29094 10.51250I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.66119 1.26252I
a = 0.23631 1.39596I
b = 1.33184 + 0.78181I
0.29094 + 10.51250I 0
u = 0.59203 + 1.31115I
a = 0.021584 0.482843I
b = 0.440321 + 0.673105I
2.09582 + 1.45533I 0
u = 0.59203 1.31115I
a = 0.021584 + 0.482843I
b = 0.440321 0.673105I
2.09582 1.45533I 0
u = 0.30134 + 1.42505I
a = 0.013198 + 0.631788I
b = 0.442076 0.614277I
2.20909 0.33519I 0
u = 0.30134 1.42505I
a = 0.013198 0.631788I
b = 0.442076 + 0.614277I
2.20909 + 0.33519I 0
u = 1.44394 + 0.42259I
a = 0.0637499 + 0.0240536I
b = 1.152850 0.428505I
6.52297 9.40235I 0
u = 1.44394 0.42259I
a = 0.0637499 0.0240536I
b = 1.152850 + 0.428505I
6.52297 + 9.40235I 0
u = 0.76723 + 1.33457I
a = 0.124143 1.294850I
b = 1.32553 + 0.70779I
3.4640 + 16.9486I 0
u = 0.76723 1.33457I
a = 0.124143 + 1.294850I
b = 1.32553 0.70779I
3.4640 16.9486I 0
u = 0.85727 + 1.29795I
a = 0.154855 0.913546I
b = 1.074300 + 0.512049I
0.33774 4.80042I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.85727 1.29795I
a = 0.154855 + 0.913546I
b = 1.074300 0.512049I
0.33774 + 4.80042I 0
u = 1.13250 + 1.08347I
a = 0.357811 + 0.825069I
b = 1.059500 0.561243I
0.29351 + 6.24678I 0
u = 1.13250 1.08347I
a = 0.357811 0.825069I
b = 1.059500 + 0.561243I
0.29351 6.24678I 0
u = 0.311983 + 0.229233I
a = 0.21073 + 3.18354I
b = 0.957483 0.269471I
3.66318 0.26666I 14.9328 + 0.9814I
u = 0.311983 0.229233I
a = 0.21073 3.18354I
b = 0.957483 + 0.269471I
3.66318 + 0.26666I 14.9328 0.9814I
u = 0.242211 + 0.227257I
a = 2.94710 4.83050I
b = 0.447980 + 0.630904I
3.20065 6.05158I 6.61264 + 3.93826I
u = 0.242211 0.227257I
a = 2.94710 + 4.83050I
b = 0.447980 0.630904I
3.20065 + 6.05158I 6.61264 3.93826I
u = 0.217813
a = 1.63753
b = 0.452023
0.718352 14.2620
u = 0.31645 + 1.94342I
a = 0.401083 + 0.176751I
b = 0.757995 + 0.007392I
3.44325 2.33828I 0
u = 0.31645 1.94342I
a = 0.401083 0.176751I
b = 0.757995 0.007392I
3.44325 + 2.33828I 0
12
II. I
u
2
= h−6630u
15
+ 14537u
14
+ · · · + 13613b 33108, 5953u
15
4661u
14
+
· · · + 13613a + 59873, u
16
3u
15
+ · · · + u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
2
=
0.437303u
15
+ 0.342393u
14
+ ··· 5.84493u 4.39822
0.487034u
15
1.06788u
14
+ ··· + 3.44362u + 2.43209
a
7
=
1
u
2
a
3
=
1.56564u
15
+ 3.28245u
14
+ ··· 7.88173u 5.86079
0.919195u
15
1.81679u
14
+ ··· + 5.01690u + 2.87703
a
10
=
u
u
a
5
=
3.20929u
15
9.05451u
14
+ ··· + 6.85624u + 3.49849
2.08095u
15
+ 6.11445u
14
+ ··· 4.81944u 2.03592
a
1
=
2.36590u
15
9.75869u
14
+ ··· + 0.387130u 0.295894
1.18784u
15
+ 5.09315u
14
+ ··· 1.75163u 0.207669
a
4
=
2.77712u
15
8.30559u
14
+ ··· + 5.28296u + 3.05355
1.64879u
15
+ 5.36553u
14
+ ··· 3.24616u 1.59098
a
11
=
0.342761u
15
+ 0.588041u
14
+ ··· 7.16470u + 1.08565
0.783002u
15
2.55528u
14
+ ··· + 4.73628u 1.42841
a
8
=
1.48182u
15
+ 5.50878u
14
+ ··· + 0.746198u 2.02233
0.481819u
15
2.50878u
14
+ ··· + 0.253802u + 1.02233
a
8
=
1.48182u
15
+ 5.50878u
14
+ ··· + 0.746198u 2.02233
0.481819u
15
2.50878u
14
+ ··· + 0.253802u + 1.02233
(ii) Obstruction class = 1
(iii) Cusp Shapes =
126196
13613
u
15
+
361017
13613
u
14
+ ···
176076
13613
u
182048
13613
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 4u
15
+ ··· + 4u + 1
c
2
u
16
+ 6u
13
+ ··· 2u + 1
c
3
u
16
+ 6u
15
+ ··· + 12u + 1
c
4
u
16
4u
15
+ ··· + 4u + 1
c
5
u
16
4u
15
+ ··· 4u + 1
c
6
u
16
3u
15
+ ··· + u + 1
c
7
u
16
6u
13
+ ··· + 2u + 1
c
8
u
16
+ 3u
15
+ ··· u + 1
c
9
u
16
+ 3u
15
+ ··· u + 1
c
10
u
16
+ 4u
15
+ ··· 4u + 1
c
11
u
16
3u
15
+ ··· + u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
16
8y
15
+ ··· 8y + 1
c
2
, c
7
y
16
36y
14
+ ··· 2y + 1
c
3
y
16
2y
15
+ ··· 16y + 1
c
4
, c
10
y
16
40y
14
+ ··· + 2y + 1
c
6
, c
9
y
16
+ 13y
15
+ ··· + 13y + 1
c
8
, c
11
y
16
+ 5y
15
+ ··· + 7y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.101294 + 0.981672I
a = 0.12047 2.74164I
b = 1.002360 + 0.178823I
1.67108 + 0.41329I 23.4089 + 3.7817I
u = 0.101294 0.981672I
a = 0.12047 + 2.74164I
b = 1.002360 0.178823I
1.67108 0.41329I 23.4089 3.7817I
u = 0.623315 + 0.892744I
a = 0.203916 + 0.768996I
b = 0.933085 0.164926I
1.48457 2.42366I 12.58854 + 4.41901I
u = 0.623315 0.892744I
a = 0.203916 0.768996I
b = 0.933085 + 0.164926I
1.48457 + 2.42366I 12.58854 4.41901I
u = 0.699739 + 0.517450I
a = 1.75573 + 1.74837I
b = 0.606505 0.489801I
3.58696 + 6.81151I 11.0601 13.1790I
u = 0.699739 0.517450I
a = 1.75573 1.74837I
b = 0.606505 + 0.489801I
3.58696 6.81151I 11.0601 + 13.1790I
u = 0.310572 + 1.172820I
a = 0.010870 + 1.004540I
b = 0.252552 1.034960I
4.17484 1.01269I 2.56085 + 0.73282I
u = 0.310572 1.172820I
a = 0.010870 1.004540I
b = 0.252552 + 1.034960I
4.17484 + 1.01269I 2.56085 0.73282I
u = 0.183037 + 0.692134I
a = 0.04599 2.88279I
b = 0.260836 + 1.037800I
2.13903 1.01254I 1.87145 + 5.73964I
u = 0.183037 0.692134I
a = 0.04599 + 2.88279I
b = 0.260836 1.037800I
2.13903 + 1.01254I 1.87145 5.73964I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00338 + 1.15887I
a = 0.264250 0.814168I
b = 1.114260 + 0.514050I
1.36811 5.87068I 3.73603 + 6.05900I
u = 1.00338 1.15887I
a = 0.264250 + 0.814168I
b = 1.114260 0.514050I
1.36811 + 5.87068I 3.73603 6.05900I
u = 0.203694 + 0.378381I
a = 1.98850 0.07556I
b = 1.70034 + 0.18352I
8.21157 + 3.18915I 16.8553 0.1010I
u = 0.203694 0.378381I
a = 1.98850 + 0.07556I
b = 1.70034 0.18352I
8.21157 3.18915I 16.8553 + 0.1010I
u = 0.38442 + 1.82901I
a = 0.0168503 + 0.1111360I
b = 0.522619 0.189004I
3.98234 2.11939I 1.081156 + 0.586483I
u = 0.38442 1.82901I
a = 0.0168503 0.1111360I
b = 0.522619 + 0.189004I
3.98234 + 2.11939I 1.081156 0.586483I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
16
+ 4u
15
+ ··· + 4u + 1)(u
80
+ u
79
+ ··· 6u 1)
c
2
(u
16
+ 6u
13
+ ··· 2u + 1)(u
80
u
79
+ ··· + 3416u 3721)
c
3
(u
16
+ 6u
15
+ ··· + 12u + 1)(u
80
3u
79
+ ··· + 35212u 5777)
c
4
(u
16
4u
15
+ ··· + 4u + 1)(u
80
+ 5u
79
+ ··· 306u 527)
c
5
(u
16
4u
15
+ ··· 4u + 1)(u
80
+ u
79
+ ··· 6u 1)
c
6
(u
16
3u
15
+ ··· + u + 1)(u
80
4u
79
+ ··· + 27u + 34)
c
7
(u
16
6u
13
+ ··· + 2u + 1)(u
80
u
79
+ ··· + 3416u 3721)
c
8
(u
16
+ 3u
15
+ ··· u + 1)(u
80
+ 2u
79
+ ··· 181u + 31)
c
9
(u
16
+ 3u
15
+ ··· u + 1)(u
80
4u
79
+ ··· + 27u + 34)
c
10
(u
16
+ 4u
15
+ ··· 4u + 1)(u
80
+ 5u
79
+ ··· 306u 527)
c
11
(u
16
3u
15
+ ··· + u + 1)(u
80
+ 2u
79
+ ··· 181u + 31)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
16
8y
15
+ ··· 8y + 1)(y
80
43y
79
+ ··· 4y + 1)
c
2
, c
7
(y
16
36y
14
+ ··· 2y + 1)
· (y
80
47y
79
+ ··· 72209726y + 13845841)
c
3
(y
16
2y
15
+ ··· 16y + 1)
· (y
80
25y
79
+ ··· 1723258088y + 33373729)
c
4
, c
10
(y
16
40y
14
+ ··· + 2y + 1)(y
80
+ 37y
79
+ ··· + 5061478y + 277729)
c
6
, c
9
(y
16
+ 13y
15
+ ··· + 13y + 1)(y
80
+ 46y
79
+ ··· 6577y + 1156)
c
8
, c
11
(y
16
+ 5y
15
+ ··· + 7y + 1)(y
80
+ 46y
79
+ ··· 21229y + 961)
19