11a
277
(K11a
277
)
A knot diagram
1
Linearized knot diagam
9 5 1 10 2 4 11 3 6 7 8
Solving Sequence
2,6
5
3,10
4 7 9 1 8 11
c
5
c
2
c
4
c
6
c
9
c
1
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.82122 × 10
22
u
34
+ 1.39965 × 10
23
u
33
+ ··· + 1.46127 × 10
23
b + 1.58974 × 10
23
,
3.04671 × 10
23
u
34
+ 2.69618 × 10
24
u
33
+ ··· + 1.16902 × 10
24
a 1.80715 × 10
25
,
u
35
9u
34
+ ··· + 129u 8i
I
u
2
= h−u
23
a u
23
+ ··· 3a 1, 4u
23
a u
23
+ ··· 18a 11, u
24
+ 7u
23
+ ··· + 15u + 3i
I
u
3
= h−u
11
6u
10
20u
9
46u
8
76u
7
94u
6
86u
5
57u
4
28u
3
11u
2
+ b 5u 1,
u
10
6u
9
20u
8
45u
7
72u
6
85u
5
72u
4
43u
3
18u
2
+ a 6u 3,
u
12
+ 6u
11
+ 20u
10
+ 46u
9
+ 77u
8
+ 98u
7
+ 95u
6
+ 71u
5
+ 42u
4
+ 21u
3
+ 10u
2
+ 3u + 1i
I
u
4
= hau + 2b a u 1, a
2
+ au a 3u 2, u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 99 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.82 × 10
22
u
34
+ 1.40 × 10
23
u
33
+ · · · + 1.46 × 10
23
b + 1.59 ×
10
23
, 3.05 × 10
23
u
34
+ 2.70 × 10
24
u
33
+ · · · + 1.17 × 10
24
a 1.81 ×
10
25
, u
35
9u
34
+ · · · + 129u 8i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
0.260621u
34
2.30636u
33
+ ··· 109.860u + 15.4587
0.124632u
34
0.957827u
33
+ ··· + 0.995973u 1.08791
a
4
=
0.0292774u
34
0.335350u
33
+ ··· + 46.0876u 8.56756
0.255676u
34
2.11726u
33
+ ··· 17.8267u + 1.81119
a
7
=
0.0652835u
34
0.480129u
33
+ ··· + 39.1684u 5.24345
0.0574092u
34
0.366296u
33
+ ··· + 9.72748u 0.148606
a
9
=
0.135989u
34
1.34853u
33
+ ··· 110.856u + 16.5466
0.124632u
34
0.957827u
33
+ ··· + 0.995973u 1.08791
a
1
=
0.0878378u
34
0.551320u
33
+ ··· + 70.1500u 12.5898
0.239219u
34
+ 2.22799u
33
+ ··· + 24.9209u 0.702702
a
8
=
0.0523471u
34
0.798413u
33
+ ··· 122.147u + 17.1988
0.207975u
34
1.87903u
33
+ ··· 13.1866u 0.118874
a
11
=
0.115771u
34
+ 1.07918u
33
+ ··· 32.8480u + 6.98223
0.0743855u
34
+ 0.536396u
33
+ ··· 12.8514u + 0.573324
a
11
=
0.115771u
34
+ 1.07918u
33
+ ··· 32.8480u + 6.98223
0.0743855u
34
+ 0.536396u
33
+ ··· 12.8514u + 0.573324
(ii) Obstruction class = 1
(iii) Cusp Shapes =
90490086581286093778343
146127200816312655174817
u
34
992059524318749332684051
146127200816312655174817
u
33
+ ···
24335687627182500119507765
146127200816312655174817
u +
1325772668265518534675334
146127200816312655174817
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
35
+ 2u
34
+ ··· u 1
c
2
, c
5
u
35
9u
34
+ ··· + 129u 8
c
3
, c
6
u
35
2u
34
+ ··· 7u 2
c
4
, c
8
u
35
+ 5u
33
+ ··· 10u 4
c
7
, c
10
, c
11
u
35
+ 10u
34
+ ··· 7u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
35
28y
34
+ ··· + 97y 1
c
2
, c
5
y
35
+ 17y
34
+ ··· + 5825y 64
c
3
, c
6
y
35
+ 4y
34
+ ··· 35y 4
c
4
, c
8
y
35
+ 10y
34
+ ··· 68y 16
c
7
, c
10
, c
11
y
35
38y
34
+ ··· 63y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.029467 + 1.005660I
a = 1.62337 + 0.62304I
b = 1.118990 0.474878I
3.33325 + 0.06783I 5.95235 + 0.12495I
u = 0.029467 1.005660I
a = 1.62337 0.62304I
b = 1.118990 + 0.474878I
3.33325 0.06783I 5.95235 0.12495I
u = 0.160155 + 0.940171I
a = 1.89608 0.73160I
b = 1.218050 + 0.448463I
1.89744 + 0.70933I 2.29610 + 0.18489I
u = 0.160155 0.940171I
a = 1.89608 + 0.73160I
b = 1.218050 0.448463I
1.89744 0.70933I 2.29610 0.18489I
u = 1.032060 + 0.216151I
a = 0.065858 0.238657I
b = 0.970266 0.697041I
0.31706 + 7.01027I 3.82014 7.79890I
u = 1.032060 0.216151I
a = 0.065858 + 0.238657I
b = 0.970266 + 0.697041I
0.31706 7.01027I 3.82014 + 7.79890I
u = 0.030627 + 1.114570I
a = 1.64670 0.23881I
b = 1.037110 + 0.708446I
0.301669 0.553139I 3.58187 + 1.60443I
u = 0.030627 1.114570I
a = 1.64670 + 0.23881I
b = 1.037110 0.708446I
0.301669 + 0.553139I 3.58187 1.60443I
u = 1.11586
a = 0.236593
b = 0.124774
2.17258 20.5000
u = 0.746671 + 0.829900I
a = 0.135819 1.208780I
b = 1.42250 0.65236I
5.09357 3.39425I 14.2242 + 15.5417I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.746671 0.829900I
a = 0.135819 + 1.208780I
b = 1.42250 + 0.65236I
5.09357 + 3.39425I 14.2242 15.5417I
u = 0.648498 + 0.961930I
a = 1.22988 0.79688I
b = 1.54855 + 0.59812I
4.64663 2.02674I 10.39702 3.31188I
u = 0.648498 0.961930I
a = 1.22988 + 0.79688I
b = 1.54855 0.59812I
4.64663 + 2.02674I 10.39702 + 3.31188I
u = 0.795787 + 0.881934I
a = 0.657988 0.155281I
b = 0.328568 0.230594I
6.54898 + 2.97371I 10.02830 2.31900I
u = 0.795787 0.881934I
a = 0.657988 + 0.155281I
b = 0.328568 + 0.230594I
6.54898 2.97371I 10.02830 + 2.31900I
u = 0.405669 + 1.141420I
a = 0.894751 + 0.750550I
b = 1.090950 0.135501I
4.39987 1.11837I 2.66422 + 2.51524I
u = 0.405669 1.141420I
a = 0.894751 0.750550I
b = 1.090950 + 0.135501I
4.39987 + 1.11837I 2.66422 2.51524I
u = 0.719504 + 0.276631I
a = 0.532660 + 0.260522I
b = 0.894361 + 0.739088I
0.64524 + 2.18197I 1.66363 5.31437I
u = 0.719504 0.276631I
a = 0.532660 0.260522I
b = 0.894361 0.739088I
0.64524 2.18197I 1.66363 + 5.31437I
u = 1.204480 + 0.248072I
a = 0.084193 + 0.300543I
b = 0.972158 + 0.693076I
7.58044 + 10.41690I 6.58450 6.84896I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.204480 0.248072I
a = 0.084193 0.300543I
b = 0.972158 0.693076I
7.58044 10.41690I 6.58450 + 6.84896I
u = 0.548826 + 1.162060I
a = 1.67262 + 0.38811I
b = 1.47723 0.97539I
3.22979 7.07568I 1.38313 + 9.02703I
u = 0.548826 1.162060I
a = 1.67262 0.38811I
b = 1.47723 + 0.97539I
3.22979 + 7.07568I 1.38313 9.02703I
u = 0.308052 + 0.545459I
a = 0.928218 + 0.582030I
b = 0.165653 + 0.455061I
0.241930 + 1.296500I 3.54219 4.67694I
u = 0.308052 0.545459I
a = 0.928218 0.582030I
b = 0.165653 0.455061I
0.241930 1.296500I 3.54219 + 4.67694I
u = 0.271698 + 1.365610I
a = 0.854456 0.533102I
b = 0.898585 + 0.116131I
5.18517 + 2.44630I 0. 4.73123I
u = 0.271698 1.365610I
a = 0.854456 + 0.533102I
b = 0.898585 0.116131I
5.18517 2.44630I 0. + 4.73123I
u = 0.595757 + 1.264360I
a = 1.58942 0.26495I
b = 1.41489 + 0.93635I
2.94252 12.83480I 0. + 9.50250I
u = 0.595757 1.264360I
a = 1.58942 + 0.26495I
b = 1.41489 0.93635I
2.94252 + 12.83480I 0. 9.50250I
u = 1.41303
a = 0.370029
b = 0.216683
8.46698 18.1290
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.64890 + 1.31702I
a = 1.53917 + 0.20834I
b = 1.39598 0.92217I
4.1620 16.9207I 0
u = 0.64890 1.31702I
a = 1.53917 0.20834I
b = 1.39598 + 0.92217I
4.1620 + 16.9207I 0
u = 0.15479 + 1.53945I
a = 0.793512 + 0.415691I
b = 0.783542 0.094287I
0.87578 + 5.04274I 0
u = 0.15479 1.53945I
a = 0.793512 0.415691I
b = 0.783542 + 0.094287I
0.87578 5.04274I 0
u = 0.100849
a = 7.70512
b = 0.864213
3.33456 1.41010
8
II. I
u
2
=
h−u
23
au
23
+· · ·3a1, 4u
23
au
23
+· · ·18a11, u
24
+7u
23
+· · ·+15u+3i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
a
1
2
u
23
a +
1
2
u
23
+ ··· +
3
2
a +
1
2
a
4
=
1
2
u
23
a +
1
6
u
23
+ ··· +
3
2
a
3
2
u
23
a 6u
22
a + ··· + u 1
a
7
=
1
2
u
23
a +
5
6
u
23
+ ··· +
1
2
a +
7
2
u
23
a + 7u
22
a + ··· + 3a 1
a
9
=
1
2
u
23
a
1
2
u
23
+ ···
1
2
a
1
2
1
2
u
23
a +
1
2
u
23
+ ··· +
3
2
a +
1
2
a
1
=
1
2
u
23
a +
5
6
u
23
+ ··· +
1
2
a +
9
2
1
a
8
=
u
23
+ 8u
22
+ ··· + a 2
1
2
u
23
a +
1
2
u
23
+ ···
3
2
a +
1
2
a
11
=
1
2
u
23
a +
5
6
u
23
+ ··· +
3
2
a +
5
2
1
2
u
23
a +
1
2
u
23
+ ··· +
3
2
a
1
2
a
11
=
1
2
u
23
a +
5
6
u
23
+ ··· +
3
2
a +
5
2
1
2
u
23
a +
1
2
u
23
+ ··· +
3
2
a
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
23
10u
22
38u
21
96u
20
196u
19
310u
18
390u
17
364u
16
176u
15
+ 152u
14
+ 576u
13
+ 960u
12
+ 1228u
11
+ 1294u
10
+ 1190u
9
+ 956u
8
+
698u
7
+ 454u
6
+ 254u
5
+ 136u
4
+ 48u
3
+ 26u
2
+ 2u 6
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
48
+ u
47
+ ··· + 16u
2
+ 2
c
2
, c
5
(u
24
+ 7u
23
+ ··· + 15u + 3)
2
c
3
, c
6
u
48
7u
47
+ ··· 28u + 8
c
4
, c
8
u
48
+ u
47
+ ··· 48u + 32
c
7
, c
10
, c
11
(u
24
3u
23
+ ··· + 3u 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
48
+ y
47
+ ··· + 64y + 4
c
2
, c
5
(y
24
+ 15y
23
+ ··· + 69y + 9)
2
c
3
, c
6
y
48
21y
47
+ ··· + 176y + 64
c
4
, c
8
y
48
+ 9y
47
+ ··· + 20736y + 1024
c
7
, c
10
, c
11
(y
24
25y
23
+ ··· 15y + 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.333614 + 0.958581I
a = 0.238717 + 0.952089I
b = 0.52014 + 1.77867I
7.10793 8.02681I 5.10804 + 8.04729I
u = 0.333614 + 0.958581I
a = 2.52196 + 0.45351I
b = 0.698461 + 0.545528I
7.10793 8.02681I 5.10804 + 8.04729I
u = 0.333614 0.958581I
a = 0.238717 0.952089I
b = 0.52014 1.77867I
7.10793 + 8.02681I 5.10804 8.04729I
u = 0.333614 0.958581I
a = 2.52196 0.45351I
b = 0.698461 0.545528I
7.10793 + 8.02681I 5.10804 8.04729I
u = 1.06754
a = 0.247659 + 0.014314I
b = 0.127875 + 0.226247I
2.16765 17.3620
u = 1.06754
a = 0.247659 0.014314I
b = 0.127875 0.226247I
2.16765 17.3620
u = 0.277461 + 1.036230I
a = 0.412312 1.328630I
b = 0.487830 + 0.447909I
1.42987 + 1.40919I 2.00295 5.17297I
u = 0.277461 + 1.036230I
a = 2.14757 + 0.13261I
b = 1.86186 0.41467I
1.42987 + 1.40919I 2.00295 5.17297I
u = 0.277461 1.036230I
a = 0.412312 + 1.328630I
b = 0.487830 0.447909I
1.42987 1.40919I 2.00295 + 5.17297I
u = 0.277461 1.036230I
a = 2.14757 0.13261I
b = 1.86186 + 0.41467I
1.42987 1.40919I 2.00295 + 5.17297I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.263524 + 0.887339I
a = 0.252966 0.916113I
b = 0.23360 1.73518I
0.45153 3.90914I 4.05947 + 8.41437I
u = 0.263524 + 0.887339I
a = 2.46741 0.35585I
b = 0.598566 0.647596I
0.45153 3.90914I 4.05947 + 8.41437I
u = 0.263524 0.887339I
a = 0.252966 + 0.916113I
b = 0.23360 + 1.73518I
0.45153 + 3.90914I 4.05947 8.41437I
u = 0.263524 0.887339I
a = 2.46741 + 0.35585I
b = 0.598566 + 0.647596I
0.45153 + 3.90914I 4.05947 8.41437I
u = 0.887982 + 0.619939I
a = 0.994897 0.465007I
b = 0.852325 + 0.186324I
6.92221 + 3.07969I 9.61105 4.95105I
u = 0.887982 + 0.619939I
a = 0.269644 0.075164I
b = 0.277184 0.666756I
6.92221 + 3.07969I 9.61105 4.95105I
u = 0.887982 0.619939I
a = 0.994897 + 0.465007I
b = 0.852325 0.186324I
6.92221 3.07969I 9.61105 + 4.95105I
u = 0.887982 0.619939I
a = 0.269644 + 0.075164I
b = 0.277184 + 0.666756I
6.92221 3.07969I 9.61105 + 4.95105I
u = 0.237103 + 0.737994I
a = 0.590664 0.004510I
b = 0.198307 + 1.243170I
0.89648 + 1.35600I 6.20233 + 1.19503I
u = 0.237103 + 0.737994I
a = 2.33888 + 0.63109I
b = 0.733711 + 0.878083I
0.89648 + 1.35600I 6.20233 + 1.19503I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.237103 0.737994I
a = 0.590664 + 0.004510I
b = 0.198307 1.243170I
0.89648 1.35600I 6.20233 1.19503I
u = 0.237103 0.737994I
a = 2.33888 0.63109I
b = 0.733711 0.878083I
0.89648 1.35600I 6.20233 1.19503I
u = 1.24600
a = 0.424934 + 0.086154I
b = 0.235738 + 0.436377I
8.40649 13.8590
u = 1.24600
a = 0.424934 0.086154I
b = 0.235738 0.436377I
8.40649 13.8590
u = 0.387072 + 0.629729I
a = 0.214970 + 0.319082I
b = 0.514411 1.214470I
8.06651 + 4.88076I 7.61294 0.00229I
u = 0.387072 + 0.629729I
a = 2.61397 0.51468I
b = 0.849819 0.782163I
8.06651 + 4.88076I 7.61294 0.00229I
u = 0.387072 0.629729I
a = 0.214970 0.319082I
b = 0.514411 + 1.214470I
8.06651 4.88076I 7.61294 + 0.00229I
u = 0.387072 0.629729I
a = 2.61397 + 0.51468I
b = 0.849819 + 0.782163I
8.06651 4.88076I 7.61294 + 0.00229I
u = 0.334204 + 1.242180I
a = 1.064980 + 0.825666I
b = 0.715953 0.434854I
4.15748 + 4.71846I 5.79042 6.26335I
u = 0.334204 + 1.242180I
a = 1.63098 + 0.22953I
b = 1.44914 + 0.85482I
4.15748 + 4.71846I 5.79042 6.26335I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.334204 1.242180I
a = 1.064980 0.825666I
b = 0.715953 + 0.434854I
4.15748 4.71846I 5.79042 + 6.26335I
u = 0.334204 1.242180I
a = 1.63098 0.22953I
b = 1.44914 0.85482I
4.15748 4.71846I 5.79042 + 6.26335I
u = 0.510133 + 0.304616I
a = 0.939645 + 0.262682I
b = 0.433520 + 0.540630I
0.17657 + 1.63085I 4.99918 5.43978I
u = 0.510133 + 0.304616I
a = 0.62521 + 1.43179I
b = 0.785164 + 0.276497I
0.17657 + 1.63085I 4.99918 5.43978I
u = 0.510133 0.304616I
a = 0.939645 0.262682I
b = 0.433520 0.540630I
0.17657 1.63085I 4.99918 + 5.43978I
u = 0.510133 0.304616I
a = 0.62521 1.43179I
b = 0.785164 0.276497I
0.17657 1.63085I 4.99918 + 5.43978I
u = 0.54684 + 1.32589I
a = 0.913096 0.034885I
b = 0.839736 + 0.802838I
1.92307 + 5.70686I 7.16158 11.30466I
u = 0.54684 + 1.32589I
a = 1.364860 + 0.199330I
b = 1.070610 0.555366I
1.92307 + 5.70686I 7.16158 11.30466I
u = 0.54684 1.32589I
a = 0.913096 + 0.034885I
b = 0.839736 0.802838I
1.92307 5.70686I 7.16158 + 11.30466I
u = 0.54684 1.32589I
a = 1.364860 0.199330I
b = 1.070610 + 0.555366I
1.92307 5.70686I 7.16158 + 11.30466I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.34545 + 1.40335I
a = 1.311200 0.410770I
b = 1.20101 1.06820I
0.65429 + 7.12209I 0.24406 7.53717I
u = 0.34545 + 1.40335I
a = 1.40359 0.60184I
b = 0.884534 + 0.381753I
0.65429 + 7.12209I 0.24406 7.53717I
u = 0.34545 1.40335I
a = 1.311200 + 0.410770I
b = 1.20101 + 1.06820I
0.65429 7.12209I 0.24406 + 7.53717I
u = 0.34545 1.40335I
a = 1.40359 + 0.60184I
b = 0.884534 0.381753I
0.65429 7.12209I 0.24406 + 7.53717I
u = 0.66247 + 1.36339I
a = 0.691207 0.146838I
b = 0.720461 0.932573I
4.26677 + 6.65894I 7.66647 7.55605I
u = 0.66247 + 1.36339I
a = 1.43628 0.21574I
b = 1.090640 + 0.480643I
4.26677 + 6.65894I 7.66647 7.55605I
u = 0.66247 1.36339I
a = 0.691207 + 0.146838I
b = 0.720461 + 0.932573I
4.26677 6.65894I 7.66647 + 7.55605I
u = 0.66247 1.36339I
a = 1.43628 + 0.21574I
b = 1.090640 0.480643I
4.26677 6.65894I 7.66647 + 7.55605I
16
III.
I
u
3
= h−u
11
6u
10
+· · ·+b1, u
10
6u
9
+· · ·+a3, u
12
+6u
11
+· · ·+3u+1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
u
10
+ 6u
9
+ ··· + 6u + 3
u
11
+ 6u
10
+ ··· + 5u + 1
a
4
=
u
11
+ 6u
10
+ ··· + 9u + 2
u
2
u 1
a
7
=
u
11
6u
10
+ ··· 19u
2
7u
u
4
+ 2u
3
+ 3u
2
+ 2u + 1
a
9
=
u
11
5u
10
+ ··· + u + 2
u
11
+ 6u
10
+ ··· + 5u + 1
a
1
=
u
11
7u
10
+ ··· 13u 4
u
11
5u
10
+ ··· 3u
2
+ 1
a
8
=
u
11
4u
10
+ ··· + 4u + 3
2u
11
+ 11u
10
+ ··· + 5u + 1
a
11
=
u
11
6u
10
+ ··· 8u 1
u
8
+ 3u
7
+ 6u
6
+ 8u
5
+ 7u
4
+ 6u
3
+ 4u
2
+ 3u + 1
a
11
=
u
11
6u
10
+ ··· 8u 1
u
8
+ 3u
7
+ 6u
6
+ 8u
5
+ 7u
4
+ 6u
3
+ 4u
2
+ 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 9u
11
+51u
10
+164u
9
+360u
8
+570u
7
+678u
6
+597u
5
+401u
4
+209u
3
+104u
2
+47u+6
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
12
+ 2u
11
+ ··· u 1
c
2
u
12
6u
11
+ ··· 3u + 1
c
3
, c
6
u
12
+ 2u
11
+ ··· + 2u + 1
c
4
, c
8
u
12
u
10
+ u
9
+ 2u
8
4u
7
+ 2u
6
u
5
+ 3u
4
u
3
u
2
u 1
c
5
u
12
+ 6u
11
+ ··· + 3u + 1
c
7
u
12
+ 3u
11
+ ··· + u 1
c
10
, c
11
u
12
3u
11
+ ··· u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
12
2y
10
+ ··· 7y + 1
c
2
, c
5
y
12
+ 4y
11
+ ··· + 11y + 1
c
3
, c
6
y
12
12y
11
+ ··· 10y
2
+ 1
c
4
, c
8
y
12
2y
11
+ ··· + y + 1
c
7
, c
10
, c
11
y
12
15y
11
+ ··· + y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.803624 + 0.881445I
a = 0.419174 0.885576I
b = 1.275410 0.219262I
4.98090 + 3.00358I 6.27510 + 2.27848I
u = 0.803624 0.881445I
a = 0.419174 + 0.885576I
b = 1.275410 + 0.219262I
4.98090 3.00358I 6.27510 2.27848I
u = 1.25207
a = 0.0881246
b = 0.437723
1.97860 21.2940
u = 0.454285 + 1.279880I
a = 1.272580 + 0.120711I
b = 0.993655 0.754655I
2.68926 + 5.20905I 1.24389 5.17860I
u = 0.454285 1.279880I
a = 1.272580 0.120711I
b = 0.993655 + 0.754655I
2.68926 5.20905I 1.24389 + 5.17860I
u = 0.224527 + 0.491967I
a = 1.91527 1.61039I
b = 0.113628 1.019110I
7.67039 6.40068I 6.43797 + 4.87755I
u = 0.224527 0.491967I
a = 1.91527 + 1.61039I
b = 0.113628 + 1.019110I
7.67039 + 6.40068I 6.43797 4.87755I
u = 0.160845 + 0.502812I
a = 2.12350 + 0.53316I
b = 0.018632 + 1.181350I
0.92209 2.24636I 7.11132 + 8.83230I
u = 0.160845 0.502812I
a = 2.12350 0.53316I
b = 0.018632 1.181350I
0.92209 + 2.24636I 7.11132 8.83230I
u = 0.38777 + 1.48567I
a = 1.087720 + 0.062274I
b = 0.793975 + 0.673367I
2.15077 + 6.80393I 5.48461 6.50411I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.38777 1.48567I
a = 1.087720 0.062274I
b = 0.793975 0.673367I
2.15077 6.80393I 5.48461 + 6.50411I
u = 1.58393
a = 0.203050
b = 0.550778
8.14019 6.83590
21
IV. I
u
4
= hau + 2b a u 1, a
2
+ au a 3u 2, u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
1
a
3
=
u
0
a
10
=
a
1
2
au +
1
2
a +
1
2
u +
1
2
a
4
=
1
2
au
1
2
a
5
2
u +
3
2
u
a
7
=
1
2
au +
1
2
a
3
2
u
3
2
1
a
9
=
1
2
au +
1
2
a
1
2
u
1
2
1
2
au +
1
2
a +
1
2
u +
1
2
a
1
=
1
2
au
1
2
a +
3
2
u +
3
2
1
a
8
=
a
1
2
au +
1
2
a +
1
2
u +
1
2
a
11
=
1
2
au +
1
2
a +
3
2
u +
3
2
1
2
au +
1
2
a +
1
2
u +
3
2
a
11
=
1
2
au +
1
2
a +
3
2
u +
3
2
1
2
au +
1
2
a +
1
2
u +
3
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
4
+ 2u
3
u
2
2u + 2
c
2
, c
3
, c
5
c
6
(u
2
+ 1)
2
c
4
, c
8
u
4
+ 3u
2
+ 2u + 2
c
7
(u 1)
4
c
10
, c
11
(u + 1)
4
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
4
6y
3
+ 13y
2
8y + 4
c
2
, c
3
, c
5
c
6
(y + 1)
4
c
4
, c
8
y
4
+ 6y
3
+ 13y
2
+ 8y + 4
c
7
, c
10
, c
11
(y 1)
4
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.11269 1.27510I
b = 0.693897 + 0.418797I
1.64493 0
u = 1.000000I
a = 2.11269 + 0.27510I
b = 1.69390 0.41880I
1.64493 0
u = 1.000000I
a = 1.11269 + 1.27510I
b = 0.693897 0.418797I
1.64493 0
u = 1.000000I
a = 2.11269 0.27510I
b = 1.69390 + 0.41880I
1.64493 0
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
9
(u
4
+ 2u
3
u
2
2u + 2)(u
12
+ 2u
11
+ ··· u 1)
· (u
35
+ 2u
34
+ ··· u 1)(u
48
+ u
47
+ ··· + 16u
2
+ 2)
c
2
((u
2
+ 1)
2
)(u
12
6u
11
+ ··· 3u + 1)(u
24
+ 7u
23
+ ··· + 15u + 3)
2
· (u
35
9u
34
+ ··· + 129u 8)
c
3
, c
6
((u
2
+ 1)
2
)(u
12
+ 2u
11
+ ··· + 2u + 1)(u
35
2u
34
+ ··· 7u 2)
· (u
48
7u
47
+ ··· 28u + 8)
c
4
, c
8
(u
4
+ 3u
2
+ 2u + 2)
· (u
12
u
10
+ u
9
+ 2u
8
4u
7
+ 2u
6
u
5
+ 3u
4
u
3
u
2
u 1)
· (u
35
+ 5u
33
+ ··· 10u 4)(u
48
+ u
47
+ ··· 48u + 32)
c
5
((u
2
+ 1)
2
)(u
12
+ 6u
11
+ ··· + 3u + 1)(u
24
+ 7u
23
+ ··· + 15u + 3)
2
· (u
35
9u
34
+ ··· + 129u 8)
c
7
((u 1)
4
)(u
12
+ 3u
11
+ ··· + u 1)(u
24
3u
23
+ ··· + 3u 1)
2
· (u
35
+ 10u
34
+ ··· 7u 2)
c
10
, c
11
((u + 1)
4
)(u
12
3u
11
+ ··· u 1)(u
24
3u
23
+ ··· + 3u 1)
2
· (u
35
+ 10u
34
+ ··· 7u 2)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
9
(y
4
6y
3
+ 13y
2
8y + 4)(y
12
2y
10
+ ··· 7y + 1)
· (y
35
28y
34
+ ··· + 97y 1)(y
48
+ y
47
+ ··· + 64y + 4)
c
2
, c
5
((y + 1)
4
)(y
12
+ 4y
11
+ ··· + 11y + 1)(y
24
+ 15y
23
+ ··· + 69y + 9)
2
· (y
35
+ 17y
34
+ ··· + 5825y 64)
c
3
, c
6
((y + 1)
4
)(y
12
12y
11
+ ··· 10y
2
+ 1)(y
35
+ 4y
34
+ ··· 35y 4)
· (y
48
21y
47
+ ··· + 176y + 64)
c
4
, c
8
(y
4
+ 6y
3
+ 13y
2
+ 8y + 4)(y
12
2y
11
+ ··· + y + 1)
· (y
35
+ 10y
34
+ ··· 68y 16)(y
48
+ 9y
47
+ ··· + 20736y + 1024)
c
7
, c
10
, c
11
((y 1)
4
)(y
12
15y
11
+ ··· + y + 1)(y
24
25y
23
+ ··· 15y + 1)
2
· (y
35
38y
34
+ ··· 63y 4)
27