11a
278
(K11a
278
)
A knot diagram
1
Linearized knot diagam
9 5 1 10 2 4 11 3 6 8 7
Solving Sequence
2,6
5
3,10
4 7 9 1 8 11
c
5
c
2
c
4
c
6
c
9
c
1
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.19641 × 10
18
u
40
1.14397 × 10
19
u
39
+ ··· + 1.66044 × 10
18
b + 1.81027 × 10
19
,
4.68165 × 10
19
u
40
5.02396 × 10
20
u
39
+ ··· + 3.98505 × 10
19
a 1.19786 × 10
21
,
u
41
11u
40
+ ··· 239u + 24i
I
u
2
= h−u
22
a 6u
21
a + ··· a 1, u
21
a 3u
22
+ ··· + a
2
13u, u
23
+ 7u
22
+ ··· + 4u + 1i
I
u
3
= h2u
15
+ 15u
14
+ ··· + b + 8, 8u
16
54u
15
+ ··· + 5a + 43, u
17
+ 8u
16
+ ··· + 29u + 5i
* 3 irreducible components of dim
C
= 0, with total 104 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.20×10
18
u
40
1.14×10
19
u
39
+· · ·+1.66×10
18
b+1.81×10
19
, 4.68×10
19
u
40
5.02 × 10
20
u
39
+ · · · + 3.99 × 10
19
a 1.20 × 10
21
, u
41
11u
40
+ · · · 239u + 24i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
1.17480u
40
+ 12.6070u
39
+ ··· 319.545u + 30.0588
0.720540u
40
+ 6.88956u
39
+ ··· + 67.6080u 10.9023
a
4
=
1.14574u
40
11.8183u
39
+ ··· 20.0365u + 6.80811
0.738778u
40
6.60293u
39
+ ··· 93.3051u + 9.76711
a
7
=
0.633150u
40
5.52375u
39
+ ··· 208.982u + 22.2813
0.938766u
40
+ 10.6746u
39
+ ··· 322.499u + 32.6119
a
9
=
0.454264u
40
+ 5.71745u
39
+ ··· 387.153u + 40.9611
0.720540u
40
+ 6.88956u
39
+ ··· + 67.6080u 10.9023
a
1
=
1.28278u
40
+ 13.4475u
39
+ ··· 94.7279u + 10.9155
0.663004u
40
8.31978u
39
+ ··· + 296.668u 30.7866
a
8
=
0.277139u
40
1.62154u
39
+ ··· 383.007u + 40.2112
0.534336u
40
+ 6.09950u
39
+ ··· 87.8238u + 6.80221
a
11
=
2.29615u
40
+ 24.6191u
39
+ ··· 309.565u + 27.7328
0.339712u
40
+ 2.80144u
39
+ ··· + 173.961u 19.8874
a
11
=
2.29615u
40
+ 24.6191u
39
+ ··· 309.565u + 27.7328
0.339712u
40
+ 2.80144u
39
+ ··· + 173.961u 19.8874
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1664141169681345798
1660437713445795359
u
40
20019045792937126226
1660437713445795359
u
39
+ ··· +
734545644265820275638
1660437713445795359
u
59737924674909497694
1660437713445795359
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
41
12u
39
+ ··· 2u + 1
c
2
, c
5
u
41
11u
40
+ ··· 239u + 24
c
3
, c
6
u
41
u
40
+ ··· + 6u + 1
c
4
, c
8
u
41
3u
39
+ ··· + 39u + 19
c
7
, c
10
, c
11
u
41
8u
40
+ ··· + 9u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
41
24y
40
+ ··· + 96y 1
c
2
, c
5
y
41
+ 23y
40
+ ··· 10223y 576
c
3
, c
6
y
41
+ 27y
40
+ ··· 82y 1
c
4
, c
8
y
41
6y
40
+ ··· + 4637y 361
c
7
, c
10
, c
11
y
41
+ 40y
40
+ ··· 87y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.029022 + 1.006330I
a = 1.62224 + 0.62151I
b = 1.118340 0.475258I
3.33397 + 0.06687I 6.02301 + 0.24252I
u = 0.029022 1.006330I
a = 1.62224 0.62151I
b = 1.118340 + 0.475258I
3.33397 0.06687I 6.02301 0.24252I
u = 0.212627 + 0.952062I
a = 1.81242 0.15435I
b = 0.78122 1.20521I
1.10287 3.44596I 5.05254 2.71451I
u = 0.212627 0.952062I
a = 1.81242 + 0.15435I
b = 0.78122 + 1.20521I
1.10287 + 3.44596I 5.05254 + 2.71451I
u = 1.052800 + 0.131390I
a = 0.017775 0.158160I
b = 0.971790 0.691117I
0.26528 + 7.29842I 3.00000 7.62825I
u = 1.052800 0.131390I
a = 0.017775 + 0.158160I
b = 0.971790 + 0.691117I
0.26528 7.29842I 3.00000 + 7.62825I
u = 0.125412 + 1.084050I
a = 1.83248 0.48717I
b = 1.204160 + 0.550939I
8.77240 + 0.69151I 5.83897 + 1.00152I
u = 0.125412 1.084050I
a = 1.83248 + 0.48717I
b = 1.204160 0.550939I
8.77240 0.69151I 5.83897 1.00152I
u = 1.12668
a = 0.245548
b = 0.130087
2.19078 19.8800
u = 0.821173 + 0.119690I
a = 0.297539 + 0.031863I
b = 0.933904 + 0.677894I
0.99974 + 2.62993I 0.91222 3.18628I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.821173 0.119690I
a = 0.297539 0.031863I
b = 0.933904 0.677894I
0.99974 2.62993I 0.91222 + 3.18628I
u = 1.182590 + 0.075770I
a = 0.116810 + 0.162777I
b = 0.978144 + 0.696826I
6.46948 + 11.04650I 0. 7.47384I
u = 1.182590 0.075770I
a = 0.116810 0.162777I
b = 0.978144 0.696826I
6.46948 11.04650I 0. + 7.47384I
u = 0.388375 + 1.153130I
a = 0.886517 + 0.002500I
b = 0.509537 0.312406I
5.35338 + 3.81903I 0
u = 0.388375 1.153130I
a = 0.886517 0.002500I
b = 0.509537 + 0.312406I
5.35338 3.81903I 0
u = 0.717608 + 0.311811I
a = 0.110757 0.623250I
b = 1.032150 + 0.566413I
7.82283 0.16471I 3.38955 + 1.65431I
u = 0.717608 0.311811I
a = 0.110757 + 0.623250I
b = 1.032150 0.566413I
7.82283 + 0.16471I 3.38955 1.65431I
u = 0.495810 + 1.155840I
a = 0.816045 + 0.781921I
b = 1.125660 0.059155I
4.52174 1.46436I 0
u = 0.495810 1.155840I
a = 0.816045 0.781921I
b = 1.125660 + 0.059155I
4.52174 + 1.46436I 0
u = 1.215000 + 0.331445I
a = 0.383654 0.112321I
b = 0.206819 0.088073I
1.95983 + 1.37588I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.215000 0.331445I
a = 0.383654 + 0.112321I
b = 0.206819 + 0.088073I
1.95983 1.37588I 0
u = 0.038850 + 0.715738I
a = 1.55374 1.28578I
b = 1.154670 + 0.349145I
7.32305 + 0.14265I 5.03936 + 0.27284I
u = 0.038850 0.715738I
a = 1.55374 + 1.28578I
b = 1.154670 0.349145I
7.32305 0.14265I 5.03936 0.27284I
u = 0.185808 + 0.685986I
a = 1.118850 + 0.444113I
b = 0.249566 + 0.572464I
0.087291 + 1.322900I 3.26673 3.24423I
u = 0.185808 0.685986I
a = 1.118850 0.444113I
b = 0.249566 0.572464I
0.087291 1.322900I 3.26673 + 3.24423I
u = 0.347665 + 1.264830I
a = 1.77476 0.18019I
b = 1.31566 + 0.98619I
12.33800 3.83464I 0
u = 0.347665 1.264830I
a = 1.77476 + 0.18019I
b = 1.31566 0.98619I
12.33800 + 3.83464I 0
u = 0.490892 + 1.239610I
a = 1.70373 + 0.26449I
b = 1.40330 0.98654I
4.41136 7.49164I 0
u = 0.490892 1.239610I
a = 1.70373 0.26449I
b = 1.40330 + 0.98654I
4.41136 + 7.49164I 0
u = 0.684336 + 1.194050I
a = 0.636884 0.796428I
b = 1.128510 0.133079I
10.00540 5.34593I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.684336 1.194050I
a = 0.636884 + 0.796428I
b = 1.128510 + 0.133079I
10.00540 + 5.34593I 0
u = 0.325776 + 1.364770I
a = 0.829707 0.563437I
b = 0.920142 + 0.089185I
5.42164 + 2.35534I 0
u = 0.325776 1.364770I
a = 0.829707 + 0.563437I
b = 0.920142 0.089185I
5.42164 2.35534I 0
u = 0.558892 + 1.297930I
a = 1.62402 0.22838I
b = 1.40055 + 0.94692I
3.92238 13.02370I 0
u = 0.558892 1.297930I
a = 1.62402 + 0.22838I
b = 1.40055 0.94692I
3.92238 + 13.02370I 0
u = 0.58068 + 1.35810I
a = 1.60234 + 0.17682I
b = 1.38863 0.93704I
10.5240 17.2112I 0
u = 0.58068 1.35810I
a = 1.60234 0.17682I
b = 1.38863 + 0.93704I
10.5240 + 17.2112I 0
u = 0.113639 + 0.464794I
a = 1.43312 + 0.66702I
b = 0.144535 + 0.741778I
0.006980 + 1.308310I 1.77615 2.91870I
u = 0.113639 0.464794I
a = 1.43312 0.66702I
b = 0.144535 0.741778I
0.006980 1.308310I 1.77615 + 2.91870I
u = 0.38362 + 1.54611I
a = 0.727259 + 0.513748I
b = 0.852167 0.006427I
11.91810 + 4.98494I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.38362 1.54611I
a = 0.727259 0.513748I
b = 0.852167 + 0.006427I
11.91810 4.98494I 0
9
II. I
u
2
= h−u
22
a 6u
21
a + · · · a 1, u
21
a 3u
22
+ · · · + a
2
13u, u
23
+
7u
22
+ · · · + 4u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
a
u
22
a + 6u
21
a + ··· + a + 1
a
4
=
u
21
8u
20
+ ··· a 3
u
22
a 6u
21
a + ··· a 1
a
7
=
u
21
6u
20
+ ··· a + 3
u
22
a + 6u
21
a + ··· + a 1
a
9
=
u
22
a 6u
21
a + ··· 4u 1
u
22
a + 6u
21
a + ··· + a + 1
a
1
=
u
21
a u
21
+ ··· + a + 4
1
a
8
=
u
21
+ 6u
20
+ ··· + a 1
u
22
a 6u
21
a + ··· a + 1
a
11
=
u
21
6u
20
+ ··· + a + 2
u
22
a + 6u
21
a + ··· + a 1
a
11
=
u
21
6u
20
+ ··· + a + 2
u
22
a + 6u
21
a + ··· + a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
22
20u
21
72u
20
172u
19
320u
18
444u
17
436u
16
196u
15
+ 308u
14
+ 932u
13
+ 1500u
12
+ 1784u
11
+ 1704u
10
+ 1348u
9
+ 844u
8
+ 436u
7
+
148u
6
+ 16u
5
20u
4
28u
3
4u
2
8u 6
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
46
u
45
+ ··· + 8u
2
+ 1
c
2
, c
5
(u
23
+ 7u
22
+ ··· + 4u + 1)
2
c
3
, c
6
u
46
7u
45
+ ··· 188u + 37
c
4
, c
8
u
46
+ u
45
+ ··· + 36u + 11
c
7
, c
10
, c
11
(u
23
+ 5u
22
+ ··· + 6u
2
1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
46
+ 7y
45
+ ··· + 16y + 1
c
2
, c
5
(y
23
+ 15y
22
+ ··· 12y 1)
2
c
3
, c
6
y
46
5y
45
+ ··· + 23412y + 1369
c
4
, c
8
y
46
13y
45
+ ··· + 4820y + 121
c
7
, c
10
, c
11
(y
23
+ 23y
22
+ ··· + 12y 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.233567 + 1.031350I
a = 0.34801 + 1.50362I
b = 0.60058 + 2.13953I
7.62895 7.86344I 3.61806 + 10.44591I
u = 0.233567 + 1.031350I
a = 2.69560 + 0.51605I
b = 0.596857 + 0.409017I
7.62895 7.86344I 3.61806 + 10.44591I
u = 0.233567 1.031350I
a = 0.34801 1.50362I
b = 0.60058 2.13953I
7.62895 + 7.86344I 3.61806 10.44591I
u = 0.233567 1.031350I
a = 2.69560 0.51605I
b = 0.596857 0.409017I
7.62895 + 7.86344I 3.61806 10.44591I
u = 0.186753 + 0.913593I
a = 0.54495 1.43828I
b = 0.02137 2.03091I
0.48240 3.68961I 4.31455 + 10.86650I
u = 0.186753 + 0.913593I
a = 2.57289 0.13037I
b = 0.443646 0.589013I
0.48240 3.68961I 4.31455 + 10.86650I
u = 0.186753 0.913593I
a = 0.54495 + 1.43828I
b = 0.02137 + 2.03091I
0.48240 + 3.68961I 4.31455 10.86650I
u = 0.186753 0.913593I
a = 2.57289 + 0.13037I
b = 0.443646 + 0.589013I
0.48240 + 3.68961I 4.31455 10.86650I
u = 1.07372
a = 0.257664 + 0.016236I
b = 0.133412 + 0.236476I
2.18491 16.7310
u = 1.07372
a = 0.257664 0.016236I
b = 0.133412 0.236476I
2.18491 16.7310
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.126300 + 0.206470I
a = 0.499507 0.147399I
b = 0.427226 + 0.266230I
1.93766 + 1.32101I 4.99704 4.34736I
u = 1.126300 + 0.206470I
a = 0.321072 0.184827I
b = 0.003992 0.480793I
1.93766 + 1.32101I 4.99704 4.34736I
u = 1.126300 0.206470I
a = 0.499507 + 0.147399I
b = 0.427226 0.266230I
1.93766 1.32101I 4.99704 + 4.34736I
u = 1.126300 0.206470I
a = 0.321072 + 0.184827I
b = 0.003992 + 0.480793I
1.93766 1.32101I 4.99704 + 4.34736I
u = 0.616588 + 1.034050I
a = 1.49907 0.31690I
b = 1.218300 + 0.349141I
4.52825 + 4.72419I 0.87243 5.66443I
u = 0.616588 + 1.034050I
a = 0.246425 + 0.316671I
b = 0.515604 0.701003I
4.52825 + 4.72419I 0.87243 5.66443I
u = 0.616588 1.034050I
a = 1.49907 + 0.31690I
b = 1.218300 0.349141I
4.52825 4.72419I 0.87243 + 5.66443I
u = 0.616588 1.034050I
a = 0.246425 0.316671I
b = 0.515604 + 0.701003I
4.52825 4.72419I 0.87243 + 5.66443I
u = 0.356806 + 1.198900I
a = 0.908631 + 0.827801I
b = 0.674442 0.472287I
4.04810 + 4.55921I 5.41713 6.09867I
u = 0.356806 + 1.198900I
a = 1.68320 + 0.12017I
b = 1.47512 + 0.74465I
4.04810 + 4.55921I 5.41713 6.09867I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.356806 1.198900I
a = 0.908631 0.827801I
b = 0.674442 + 0.472287I
4.04810 4.55921I 5.41713 + 6.09867I
u = 0.356806 1.198900I
a = 1.68320 0.12017I
b = 1.47512 0.74465I
4.04810 4.55921I 5.41713 + 6.09867I
u = 0.089537 + 0.682903I
a = 1.058990 0.734558I
b = 0.199185 + 0.887413I
0.19963 + 1.69919I 7.29306 0.59779I
u = 0.089537 + 0.682903I
a = 2.31010 + 1.12368I
b = 0.994995 + 1.004440I
0.19963 + 1.69919I 7.29306 0.59779I
u = 0.089537 0.682903I
a = 1.058990 + 0.734558I
b = 0.199185 0.887413I
0.19963 1.69919I 7.29306 + 0.59779I
u = 0.089537 0.682903I
a = 2.31010 1.12368I
b = 0.994995 1.004440I
0.19963 1.69919I 7.29306 + 0.59779I
u = 0.184645 + 1.327800I
a = 1.58659 0.65447I
b = 1.47802 1.24587I
11.44280 + 6.01561I 9.34351 5.45649I
u = 0.184645 + 1.327800I
a = 1.53384 0.96668I
b = 0.765206 + 0.253347I
11.44280 + 6.01561I 9.34351 5.45649I
u = 0.184645 1.327800I
a = 1.58659 + 0.65447I
b = 1.47802 + 1.24587I
11.44280 6.01561I 9.34351 + 5.45649I
u = 0.184645 1.327800I
a = 1.53384 + 0.96668I
b = 0.765206 0.253347I
11.44280 6.01561I 9.34351 + 5.45649I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.54822 + 1.33148I
a = 0.914945 0.015844I
b = 0.843719 + 0.814001I
1.92714 + 5.73570I 6.54258 11.45569I
u = 0.54822 + 1.33148I
a = 1.365520 + 0.207271I
b = 1.065870 0.549777I
1.92714 + 5.73570I 6.54258 11.45569I
u = 0.54822 1.33148I
a = 0.914945 + 0.015844I
b = 0.843719 0.814001I
1.92714 5.73570I 6.54258 + 11.45569I
u = 0.54822 1.33148I
a = 1.365520 0.207271I
b = 1.065870 + 0.549777I
1.92714 5.73570I 6.54258 + 11.45569I
u = 0.388479 + 0.400318I
a = 1.155830 0.149061I
b = 0.438402 + 0.600768I
0.02603 + 1.77955I 5.09313 4.79070I
u = 0.388479 + 0.400318I
a = 1.14506 + 1.66093I
b = 0.919497 + 0.346909I
0.02603 + 1.77955I 5.09313 4.79070I
u = 0.388479 0.400318I
a = 1.155830 + 0.149061I
b = 0.438402 0.600768I
0.02603 1.77955I 5.09313 + 4.79070I
u = 0.388479 0.400318I
a = 1.14506 1.66093I
b = 0.919497 0.346909I
0.02603 1.77955I 5.09313 + 4.79070I
u = 0.300297 + 0.396341I
a = 0.36424 + 1.38690I
b = 0.583913 0.986914I
5.91614 + 5.40360I 0.73363 1.75125I
u = 0.300297 + 0.396341I
a = 3.16595 0.53729I
b = 0.874871 0.799916I
5.91614 + 5.40360I 0.73363 1.75125I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.300297 0.396341I
a = 0.36424 1.38690I
b = 0.583913 + 0.986914I
5.91614 5.40360I 0.73363 + 1.75125I
u = 0.300297 0.396341I
a = 3.16595 + 0.53729I
b = 0.874871 + 0.799916I
5.91614 5.40360I 0.73363 + 1.75125I
u = 0.55226 + 1.43648I
a = 0.920559 0.249915I
b = 0.878187 0.988227I
6.99739 + 7.32012I 2.83321 9.36955I
u = 0.55226 + 1.43648I
a = 1.43177 0.29444I
b = 1.037170 + 0.468605I
6.99739 + 7.32012I 2.83321 9.36955I
u = 0.55226 1.43648I
a = 0.920559 + 0.249915I
b = 0.878187 + 0.988227I
6.99739 7.32012I 2.83321 + 9.36955I
u = 0.55226 1.43648I
a = 1.43177 + 0.29444I
b = 1.037170 0.468605I
6.99739 7.32012I 2.83321 + 9.36955I
17
III. I
u
3
=
h2u
15
+15u
14
+· · ·+b+8, 8u
16
54u
15
+· · ·+5a+43, u
17
+8u
16
+· · ·+29u+5i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
8
5
u
16
+
54
5
u
15
+ ··· 44u
43
5
2u
15
15u
14
+ ··· 47u 8
a
4
=
1
5
u
16
+
8
5
u
15
+ ··· + 19u +
24
5
u
2
u 1
a
7
=
1
5
u
16
8
5
u
15
+ ··· 17u
14
5
u
4
+ 2u
3
+ 3u
2
+ 2u + 1
a
9
=
8
5
u
16
+
64
5
u
15
+ ··· + 3u
3
5
2u
15
15u
14
+ ··· 47u 8
a
1
=
4
5
u
16
+
32
5
u
15
+ ··· + 8u
4
5
u
15
7u
14
+ ··· 23u 4
a
8
=
8
5
u
16
+
59
5
u
15
+ ··· 28u
28
5
2u
15
15u
14
+ ··· 45u 8
a
11
=
2
5
u
16
+
11
5
u
15
+ ··· 39u
42
5
u
15
7u
14
+ ··· 16u 2
a
11
=
2
5
u
16
+
11
5
u
15
+ ··· 39u
42
5
u
15
7u
14
+ ··· 16u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 8u
16
73u
15
345u
14
1129u
13
2811u
12
5603u
11
9220u
10
12735u
9
14949u
8
15016u
7
12923u
6
9534u
5
5946u
4
3070u
3
1267u
2
373u 64
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
17
+ 3u
15
+ ··· u 1
c
2
u
17
8u
16
+ ··· + 29u 5
c
3
, c
6
u
17
+ u
16
+ ··· + u + 1
c
4
, c
8
u
17
4u
15
+ ··· 2u
2
+ 1
c
5
u
17
+ 8u
16
+ ··· + 29u + 5
c
7
u
17
5u
16
+ ··· + 6u 1
c
10
, c
11
u
17
+ 5u
16
+ ··· + 6u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
17
+ 6y
16
+ ··· + 7y 1
c
2
, c
5
y
17
+ 8y
16
+ ··· 159y 25
c
3
, c
6
y
17
7y
16
+ ··· + y 1
c
4
, c
8
y
17
8y
16
+ ··· + 4y 1
c
7
, c
10
, c
11
y
17
+ 17y
16
+ ··· 8y 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.212883 + 0.989804I
a = 1.78717 0.40799I
b = 0.65506 1.31329I
1.43397 + 3.72395I 9.02521 8.71756I
u = 0.212883 0.989804I
a = 1.78717 + 0.40799I
b = 0.65506 + 1.31329I
1.43397 3.72395I 9.02521 + 8.71756I
u = 0.187789 + 0.804462I
a = 1.56094 1.01561I
b = 0.263040 1.039610I
7.01302 6.58132I 2.73271 + 4.66890I
u = 0.187789 0.804462I
a = 1.56094 + 1.01561I
b = 0.263040 + 1.039610I
7.01302 + 6.58132I 2.73271 4.66890I
u = 0.049862 + 0.811132I
a = 1.77966 + 0.76282I
b = 0.299763 + 1.223360I
0.38103 2.23066I 3.27072 + 6.66488I
u = 0.049862 0.811132I
a = 1.77966 0.76282I
b = 0.299763 1.223360I
0.38103 + 2.23066I 3.27072 6.66488I
u = 1.26194
a = 0.0920978
b = 0.443696
1.98855 20.3120
u = 0.623402 + 0.351291I
a = 0.635918 + 0.086672I
b = 0.381807 + 0.805862I
0.81423 1.18978I 7.16259 + 1.41463I
u = 0.623402 0.351291I
a = 0.635918 0.086672I
b = 0.381807 0.805862I
0.81423 + 1.18978I 7.16259 1.41463I
u = 0.159792 + 1.337940I
a = 1.264290 + 0.275164I
b = 0.691210 + 0.860233I
9.78949 + 6.03317I 3.31072 5.48564I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.159792 1.337940I
a = 1.264290 0.275164I
b = 0.691210 0.860233I
9.78949 6.03317I 3.31072 + 5.48564I
u = 0.459989 + 1.288470I
a = 1.256360 + 0.121374I
b = 0.988881 0.741602I
2.67441 + 5.22342I 1.79503 5.33597I
u = 0.459989 1.288470I
a = 1.256360 0.121374I
b = 0.988881 + 0.741602I
2.67441 5.22342I 1.79503 + 5.33597I
u = 1.41090 + 0.33080I
a = 0.174049 0.117023I
b = 0.570172 0.082917I
2.33565 + 1.27004I 12.05941 + 2.53511I
u = 1.41090 0.33080I
a = 0.174049 + 0.117023I
b = 0.570172 + 0.082917I
2.33565 1.27004I 12.05941 2.53511I
u = 0.63999 + 1.39192I
a = 0.996603 0.187799I
b = 0.949489 + 0.516009I
6.14483 + 5.85758I 2.31283 5.33514I
u = 0.63999 1.39192I
a = 0.996603 + 0.187799I
b = 0.949489 0.516009I
6.14483 5.85758I 2.31283 + 5.33514I
22
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
9
(u
17
+ 3u
15
+ ··· u 1)(u
41
12u
39
+ ··· 2u + 1)
· (u
46
u
45
+ ··· + 8u
2
+ 1)
c
2
(u
17
8u
16
+ ··· + 29u 5)(u
23
+ 7u
22
+ ··· + 4u + 1)
2
· (u
41
11u
40
+ ··· 239u + 24)
c
3
, c
6
(u
17
+ u
16
+ ··· + u + 1)(u
41
u
40
+ ··· + 6u + 1)
· (u
46
7u
45
+ ··· 188u + 37)
c
4
, c
8
(u
17
4u
15
+ ··· 2u
2
+ 1)(u
41
3u
39
+ ··· + 39u + 19)
· (u
46
+ u
45
+ ··· + 36u + 11)
c
5
(u
17
+ 8u
16
+ ··· + 29u + 5)(u
23
+ 7u
22
+ ··· + 4u + 1)
2
· (u
41
11u
40
+ ··· 239u + 24)
c
7
(u
17
5u
16
+ ··· + 6u 1)(u
23
+ 5u
22
+ ··· + 6u
2
1)
2
· (u
41
8u
40
+ ··· + 9u 2)
c
10
, c
11
(u
17
+ 5u
16
+ ··· + 6u + 1)(u
23
+ 5u
22
+ ··· + 6u
2
1)
2
· (u
41
8u
40
+ ··· + 9u 2)
23
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
9
(y
17
+ 6y
16
+ ··· + 7y 1)(y
41
24y
40
+ ··· + 96y 1)
· (y
46
+ 7y
45
+ ··· + 16y + 1)
c
2
, c
5
(y
17
+ 8y
16
+ ··· 159y 25)(y
23
+ 15y
22
+ ··· 12y 1)
2
· (y
41
+ 23y
40
+ ··· 10223y 576)
c
3
, c
6
(y
17
7y
16
+ ··· + y 1)(y
41
+ 27y
40
+ ··· 82y 1)
· (y
46
5y
45
+ ··· + 23412y + 1369)
c
4
, c
8
(y
17
8y
16
+ ··· + 4y 1)(y
41
6y
40
+ ··· + 4637y 361)
· (y
46
13y
45
+ ··· + 4820y + 121)
c
7
, c
10
, c
11
(y
17
+ 17y
16
+ ··· 8y 1)(y
23
+ 23y
22
+ ··· + 12y 1)
2
· (y
41
+ 40y
40
+ ··· 87y 4)
24