11a
279
(K11a
279
)
A knot diagram
1
Linearized knot diagam
6 9 1 10 2 4 11 3 5 7 8
Solving Sequence
7,11
8
1,4
3 6 2 10 5 9
c
7
c
11
c
3
c
6
c
1
c
10
c
4
c
9
c
2
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−207u
22
+ 1583u
21
+ ··· + 4b 1196, 703u
22
+ 5325u
21
+ ··· + 8a 3908,
u
23
9u
22
+ ··· 16u 8i
I
u
2
= h−67075021335a
5
u
5
139677423007u
5
a
4
+ ··· + 70899952257a 101012825507,
a
5
u
5
8u
5
a
4
+ ··· 56a + 146, u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
I
u
3
= hu
13
+ u
12
6u
11
6u
10
+ 13u
9
+ 12u
8
15u
7
10u
6
+ 14u
5
+ 5u
4
8u
3
u
2
+ b + 2u,
u
11
6u
9
+ 13u
7
u
6
14u
5
+ 4u
4
+ 10u
3
5u
2
+ a 3u + 2,
u
14
+ 2u
13
6u
12
13u
11
+ 13u
10
+ 31u
9
15u
8
36u
7
+ 15u
6
+ 26u
5
11u
4
12u
3
+ 3u
2
+ 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 73 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−207u
22
+ 1583u
21
+ · · · + 4b 1196, 703u
22
+ 5325u
21
+ · · · +
8a 3908, u
23
9u
22
+ · · · 16u 8i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
87.8750u
22
665.625u
21
+ ··· + 1316.50u + 488.500
207
4
u
22
1583
4
u
21
+ ··· +
1625
2
u + 299
a
3
=
17.8750u
22
127.625u
21
+ ··· + 189.500u + 74.5000
23
4
u
22
107
4
u
21
+ ···
185
2
u 23
a
6
=
27u
22
+ 202u
21
+ ···
737
2
u
279
2
41
2
u
22
+ 155u
21
+ ···
599
2
u 112
a
2
=
89
2
u
22
+
1365
4
u
21
+ ···
2899
4
u 264
127
4
u
22
+
973
4
u
21
+ ··· 523u 190
a
10
=
u
u
a
5
=
2.87500u
22
31.6250u
21
+ ··· + 143.500u + 46.5000
133
4
u
22
+
953
4
u
21
+ ···
721
2
u 143
a
9
=
14u
22
+ 106u
21
+ ···
403
2
u
151
2
20u
22
+
305
2
u
21
+ ···
599
2
u 112
a
9
=
14u
22
+ 106u
21
+ ···
403
2
u
151
2
20u
22
+
305
2
u
21
+ ···
599
2
u 112
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 170u
22
1286u
21
+ 3085u
20
847u
19
4606u
18
3555u
17
+ 14615u
16
+ 14163u
15
31843u
14
26814u
13
+ 25733u
12
+ 61934u
11
11560u
10
75044u
9
12076u
8
+
43840u
7
+ 41946u
6
26305u
5
16870u
4
1708u
3
+ 3903u
2
+ 2554u + 954
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
23
14u
22
+ ··· + 608u 64
c
2
, c
4
, c
8
c
9
u
23
+ 12u
21
+ ··· + 2u + 1
c
3
, c
6
u
23
2u
22
+ ··· 10u 1
c
7
, c
10
, c
11
u
23
+ 9u
22
+ ··· 16u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
23
+ 12y
22
+ ··· 3072y 4096
c
2
, c
4
, c
8
c
9
y
23
+ 24y
22
+ ··· + 2y 1
c
3
, c
6
y
23
16y
22
+ ··· + 58y 1
c
7
, c
10
, c
11
y
23
23y
22
+ ··· 32y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.967745 + 0.381665I
a = 0.201884 + 0.414286I
b = 0.183628 0.001198I
1.61771 1.40406I 4.39049 3.86592I
u = 0.967745 0.381665I
a = 0.201884 0.414286I
b = 0.183628 + 0.001198I
1.61771 + 1.40406I 4.39049 + 3.86592I
u = 0.698852 + 0.821638I
a = 0.477872 + 0.534934I
b = 1.29859 0.66746I
10.9998 + 10.3816I 5.93991 6.82804I
u = 0.698852 0.821638I
a = 0.477872 0.534934I
b = 1.29859 + 0.66746I
10.9998 10.3816I 5.93991 + 6.82804I
u = 0.497254 + 0.985536I
a = 0.155208 + 0.547360I
b = 1.111120 + 0.180964I
10.27160 4.44360I 7.21311 + 2.51122I
u = 0.497254 0.985536I
a = 0.155208 0.547360I
b = 1.111120 0.180964I
10.27160 + 4.44360I 7.21311 2.51122I
u = 1.143500 + 0.155903I
a = 0.153289 + 0.400091I
b = 0.166969 + 1.049480I
2.11154 + 2.89602I 5.87366 5.40163I
u = 1.143500 0.155903I
a = 0.153289 0.400091I
b = 0.166969 1.049480I
2.11154 2.89602I 5.87366 + 5.40163I
u = 0.712264 + 0.994425I
a = 0.160694 0.410443I
b = 1.026660 + 0.292744I
5.31535 + 3.36271I 7.37506 4.35567I
u = 0.712264 0.994425I
a = 0.160694 + 0.410443I
b = 1.026660 0.292744I
5.31535 3.36271I 7.37506 + 4.35567I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.42821
a = 1.51970
b = 0.929418
3.83839 0.512880
u = 1.48911 + 0.05545I
a = 1.87603 0.45482I
b = 1.31072 0.53567I
6.91782 3.55772I 4.11987 + 3.22917I
u = 1.48911 0.05545I
a = 1.87603 + 0.45482I
b = 1.31072 + 0.53567I
6.91782 + 3.55772I 4.11987 3.22917I
u = 0.406359 + 0.227585I
a = 1.54270 + 0.18400I
b = 0.725818 + 0.732059I
0.62578 + 2.55105I 5.72447 4.75724I
u = 0.406359 0.227585I
a = 1.54270 0.18400I
b = 0.725818 0.732059I
0.62578 2.55105I 5.72447 + 4.75724I
u = 0.089013 + 0.421365I
a = 1.053790 + 0.259361I
b = 0.043793 0.543989I
0.762182 0.859530I 5.83936 + 4.64887I
u = 0.089013 0.421365I
a = 1.053790 0.259361I
b = 0.043793 + 0.543989I
0.762182 + 0.859530I 5.83936 4.64887I
u = 1.60902 + 0.26327I
a = 1.77485 0.04465I
b = 1.64226 + 0.99576I
18.6220 14.4160I 7.82251 + 6.36300I
u = 1.60902 0.26327I
a = 1.77485 + 0.04465I
b = 1.64226 0.99576I
18.6220 + 14.4160I 7.82251 6.36300I
u = 1.62187 + 0.36588I
a = 0.952251 0.437186I
b = 1.191870 + 0.399326I
17.1859 0.6728I 9.48576 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.62187 0.36588I
a = 0.952251 + 0.437186I
b = 1.191870 0.399326I
17.1859 + 0.6728I 9.48576 + 0.I
u = 1.64539 + 0.28873I
a = 1.332570 + 0.052250I
b = 1.33854 0.83024I
13.1794 8.0766I 6.59988 + 4.65013I
u = 1.64539 0.28873I
a = 1.332570 0.052250I
b = 1.33854 + 0.83024I
13.1794 + 8.0766I 6.59988 4.65013I
7
II. I
u
2
= h−6.71 × 10
10
a
5
u
5
1.40 × 10
11
a
4
u
5
+ · · · + 7.09 × 10
10
a 1.01 ×
10
11
, a
5
u
5
8u
5
a
4
+ · · · 56a + 146, u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
a
0.371284a
5
u
5
+ 0.773165a
4
u
5
+ ··· 0.392457a + 0.559142
a
3
=
0.170270a
5
u
5
+ 0.0886799a
4
u
5
+ ··· + 0.698794a 0.338523
0.0269564a
5
u
5
+ 0.359586a
4
u
5
+ ··· 0.193734a + 0.241379
a
6
=
0.213956a
5
u
5
0.218275a
4
u
5
+ ··· 0.238216a 1.06457
0.561901a
5
u
5
0.0721808a
4
u
5
+ ··· + 2.14554a + 0.0866807
a
2
=
0.258733a
5
u
5
+ 0.471591a
4
u
5
+ ··· + 1.67688a 1.32875
0.378233a
5
u
5
+ 0.298414a
4
u
5
+ ··· 1.26568a + 2.33162
a
10
=
u
u
a
5
=
0.170270a
5
u
5
+ 0.0886799a
4
u
5
+ ··· + 0.698794a 0.338523
0.541554a
5
u
5
+ 0.861845a
4
u
5
+ ··· 0.693662a + 0.220619
a
9
=
0.0275530a
5
u
5
0.0220361a
4
u
5
+ ··· 0.143100a 1.01359
0.371225a
5
u
5
0.710937a
4
u
5
+ ··· 0.730561a + 1.33567
a
9
=
0.0275530a
5
u
5
0.0220361a
4
u
5
+ ··· 0.143100a 1.01359
0.371225a
5
u
5
0.710937a
4
u
5
+ ··· 0.730561a + 1.33567
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
345052934836
180656766347
a
5
u
5
+
45427860044
180656766347
u
5
a
4
+ ··· +
176923926364
180656766347
a
1401640745238
180656766347
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
3
+ u
2
+ 2u + 1)
12
c
2
, c
4
, c
8
c
9
u
36
+ u
35
+ ··· 62u + 59
c
3
, c
6
u
36
7u
35
+ ··· 12064u + 1913
c
7
, c
10
, c
11
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
6
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
3
+ 3y
2
+ 2y 1)
12
c
2
, c
4
, c
8
c
9
y
36
+ 35y
35
+ ··· 69452y + 3481
c
3
, c
6
y
36
17y
35
+ ··· 71361608y + 3659569
c
7
, c
10
, c
11
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
6
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.740979 0.192185I
b = 0.450829 + 0.179718I
0.86110 1.97241I 2.44379 + 3.68478I
u = 0.493180 + 0.575288I
a = 0.278434 0.615278I
b = 1.47772 + 0.68516I
4.99869 4.80053I 4.08548 + 6.66423I
u = 0.493180 + 0.575288I
a = 0.091295 + 0.628827I
b = 0.824811 0.438466I
0.86110 1.97241I 2.44379 + 3.68478I
u = 0.493180 + 0.575288I
a = 0.30781 1.40775I
b = 0.983052 0.169478I
4.99869 + 0.85571I 4.08548 + 0.70533I
u = 0.493180 + 0.575288I
a = 1.46445 + 0.74881I
b = 0.787709 0.753418I
4.99869 4.80053I 4.08548 + 6.66423I
u = 0.493180 + 0.575288I
a = 0.016507 + 0.259156I
b = 0.803665 + 0.839255I
4.99869 + 0.85571I 4.08548 + 0.70533I
u = 0.493180 0.575288I
a = 0.740979 + 0.192185I
b = 0.450829 0.179718I
0.86110 + 1.97241I 2.44379 3.68478I
u = 0.493180 0.575288I
a = 0.278434 + 0.615278I
b = 1.47772 0.68516I
4.99869 + 4.80053I 4.08548 6.66423I
u = 0.493180 0.575288I
a = 0.091295 0.628827I
b = 0.824811 + 0.438466I
0.86110 + 1.97241I 2.44379 3.68478I
u = 0.493180 0.575288I
a = 0.30781 + 1.40775I
b = 0.983052 + 0.169478I
4.99869 0.85571I 4.08548 0.70533I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 0.575288I
a = 1.46445 0.74881I
b = 0.787709 + 0.753418I
4.99869 + 4.80053I 4.08548 6.66423I
u = 0.493180 0.575288I
a = 0.016507 0.259156I
b = 0.803665 0.839255I
4.99869 0.85571I 4.08548 0.70533I
u = 0.483672
a = 0.56022 + 1.30558I
b = 1.14384 1.41582I
8.69778 2.82812I 12.92653 + 2.97945I
u = 0.483672
a = 0.56022 1.30558I
b = 1.14384 + 1.41582I
8.69778 + 2.82812I 12.92653 2.97945I
u = 0.483672
a = 1.14171 + 2.07722I
b = 0.819304 0.518752I
4.56020 6.39727 + 0.I
u = 0.483672
a = 1.14171 2.07722I
b = 0.819304 + 0.518752I
4.56020 6.39727 + 0.I
u = 0.483672
a = 2.09393 + 3.55870I
b = 0.760815 + 0.201046I
8.69778 + 2.82812I 12.92653 2.97945I
u = 0.483672
a = 2.09393 3.55870I
b = 0.760815 0.201046I
8.69778 2.82812I 12.92653 + 2.97945I
u = 1.52087 + 0.16310I
a = 1.132330 + 0.632859I
b = 0.990662 0.420388I
11.65450 + 1.76400I 8.09089 0.22537I
u = 1.52087 + 0.16310I
a = 1.46325 + 0.14079I
b = 0.986534 0.078657I
7.51693 + 4.59213I 1.56163 3.20482I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.52087 + 0.16310I
a = 1.15205 0.98203I
b = 1.29593 0.89600I
11.65450 + 1.76400I 8.09089 0.22537I
u = 1.52087 + 0.16310I
a = 1.60159 + 0.04217I
b = 1.39264 + 0.86643I
7.51693 + 4.59213I 1.56163 3.20482I
u = 1.52087 + 0.16310I
a = 1.99126 + 0.06689I
b = 0.995465 + 0.542799I
11.65450 + 7.42025I 8.09089 6.18427I
u = 1.52087 + 0.16310I
a = 2.33259 0.14304I
b = 2.24483 1.05775I
11.65450 + 7.42025I 8.09089 6.18427I
u = 1.52087 0.16310I
a = 1.132330 0.632859I
b = 0.990662 + 0.420388I
11.65450 1.76400I 8.09089 + 0.22537I
u = 1.52087 0.16310I
a = 1.46325 0.14079I
b = 0.986534 + 0.078657I
7.51693 4.59213I 1.56163 + 3.20482I
u = 1.52087 0.16310I
a = 1.15205 + 0.98203I
b = 1.29593 + 0.89600I
11.65450 1.76400I 8.09089 + 0.22537I
u = 1.52087 0.16310I
a = 1.60159 0.04217I
b = 1.39264 0.86643I
7.51693 4.59213I 1.56163 + 3.20482I
u = 1.52087 0.16310I
a = 1.99126 0.06689I
b = 0.995465 0.542799I
11.65450 7.42025I 8.09089 + 6.18427I
u = 1.52087 0.16310I
a = 2.33259 + 0.14304I
b = 2.24483 + 1.05775I
11.65450 7.42025I 8.09089 + 6.18427I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.53904
a = 1.256830 + 0.322591I
b = 1.04268 + 1.26059I
11.4814 5.24999 + 0.I
u = 1.53904
a = 1.256830 0.322591I
b = 1.04268 1.26059I
11.4814 5.24999 + 0.I
u = 1.53904
a = 1.35561 + 0.87104I
b = 0.800589 0.413513I
15.6190 + 2.8281I 11.77925 2.97945I
u = 1.53904
a = 1.35561 0.87104I
b = 0.800589 + 0.413513I
15.6190 2.8281I 11.77925 + 2.97945I
u = 1.53904
a = 1.56616 + 1.60926I
b = 1.62334 + 2.47120I
15.6190 + 2.8281I 11.77925 2.97945I
u = 1.53904
a = 1.56616 1.60926I
b = 1.62334 2.47120I
15.6190 2.8281I 11.77925 + 2.97945I
14
III.
I
u
3
= hu
13
+ u
12
+ · · · +b + 2u, u
11
6u
9
+ · · · +a + 2, u
14
+ 2u
13
+ · · · +2u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
u
11
+ 6u
9
13u
7
+ u
6
+ 14u
5
4u
4
10u
3
+ 5u
2
+ 3u 2
u
13
u
12
+ ··· + u
2
2u
a
3
=
u
13
8u
11
+ 25u
9
39u
7
+ 2u
6
+ 35u
5
7u
4
21u
3
+ 6u
2
+ 5u 1
u
13
7u
11
+ ··· u + 1
a
6
=
3u
13
3u
12
+ ··· + 2u
2
8u
u
13
u
12
+ ··· 3u
2
+ 2u
a
2
=
2u
13
+ 2u
12
+ ··· + 9u + 5
u
13
8u
11
+ 24u
9
u
8
35u
7
+ 5u
6
+ 29u
5
9u
4
16u
3
+ 6u
2
+ 3u
a
10
=
u
u
a
5
=
u
13
u
12
+ ··· + 2u 3
2u
13
2u
12
+ ··· 3u 1
a
9
=
u
13
2u
12
+ ··· 10u 1
u
12
+ u
11
+ ··· + u + 1
a
9
=
u
13
2u
12
+ ··· 10u 1
u
12
+ u
11
+ ··· + u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
13
+ 16u
11
49u
9
+ 3u
8
+ 74u
7
15u
6
65u
5
+ 24u
4
+ 37u
3
13u
2
5u 5
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
u
13
+ ··· + 2u + 1
c
2
, c
9
u
14
+ 8u
12
+ ··· + u + 1
c
3
, c
6
u
14
+ 2u
13
+ ··· + 5u + 1
c
4
, c
8
u
14
+ 8u
12
+ ··· u + 1
c
5
u
14
+ u
13
+ ··· 2u + 1
c
7
u
14
+ 2u
13
+ ··· + 2u + 1
c
10
, c
11
u
14
2u
13
+ ··· 2u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
14
+ 9y
13
+ ··· + 6y + 1
c
2
, c
4
, c
8
c
9
y
14
+ 16y
13
+ ··· + 25y + 1
c
3
, c
6
y
14
4y
13
+ ··· 7y + 1
c
7
, c
10
, c
11
y
14
16y
13
+ ··· + 2y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.914089 + 0.533567I
a = 0.165475 0.801291I
b = 0.414186 + 0.217927I
4.27946 + 2.06111I 5.58371 2.18778I
u = 0.914089 0.533567I
a = 0.165475 + 0.801291I
b = 0.414186 0.217927I
4.27946 2.06111I 5.58371 + 2.18778I
u = 0.639246 + 0.615121I
a = 0.398775 + 0.418812I
b = 0.853967 0.278506I
1.91266 2.33379I 7.27584 + 5.70217I
u = 0.639246 0.615121I
a = 0.398775 0.418812I
b = 0.853967 + 0.278506I
1.91266 + 2.33379I 7.27584 5.70217I
u = 0.878231 + 0.123651I
a = 0.362803 0.376792I
b = 0.464478 0.739423I
1.38673 2.23365I 1.78196 + 2.13694I
u = 0.878231 0.123651I
a = 0.362803 + 0.376792I
b = 0.464478 + 0.739423I
1.38673 + 2.23365I 1.78196 2.13694I
u = 1.41453 + 0.15062I
a = 1.54661 + 1.19373I
b = 1.200660 + 0.246781I
12.27320 + 4.41428I 8.90552 3.48503I
u = 1.41453 0.15062I
a = 1.54661 1.19373I
b = 1.200660 0.246781I
12.27320 4.41428I 8.90552 + 3.48503I
u = 1.53841 + 0.05626I
a = 0.092978 + 0.343432I
b = 0.284029 + 1.361390I
14.1430 + 1.3793I 8.26367 0.38542I
u = 1.53841 0.05626I
a = 0.092978 0.343432I
b = 0.284029 1.361390I
14.1430 1.3793I 8.26367 + 0.38542I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.55089 + 0.15006I
a = 1.77076 0.02850I
b = 1.48201 + 0.53476I
9.15749 + 4.88700I 8.41454 3.92217I
u = 1.55089 0.15006I
a = 1.77076 + 0.02850I
b = 1.48201 0.53476I
9.15749 4.88700I 8.41454 + 3.92217I
u = 0.176381 + 0.304536I
a = 3.27272 + 0.24854I
b = 0.729960 0.704235I
7.84036 2.64248I 1.77475 + 0.54497I
u = 0.176381 0.304536I
a = 3.27272 0.24854I
b = 0.729960 + 0.704235I
7.84036 + 2.64248I 1.77475 0.54497I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
3
+ u
2
+ 2u + 1)
12
)(u
14
u
13
+ ··· + 2u + 1)
· (u
23
14u
22
+ ··· + 608u 64)
c
2
, c
9
(u
14
+ 8u
12
+ ··· + u + 1)(u
23
+ 12u
21
+ ··· + 2u + 1)
· (u
36
+ u
35
+ ··· 62u + 59)
c
3
, c
6
(u
14
+ 2u
13
+ ··· + 5u + 1)(u
23
2u
22
+ ··· 10u 1)
· (u
36
7u
35
+ ··· 12064u + 1913)
c
4
, c
8
(u
14
+ 8u
12
+ ··· u + 1)(u
23
+ 12u
21
+ ··· + 2u + 1)
· (u
36
+ u
35
+ ··· 62u + 59)
c
5
((u
3
+ u
2
+ 2u + 1)
12
)(u
14
+ u
13
+ ··· 2u + 1)
· (u
23
14u
22
+ ··· + 608u 64)
c
7
((u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
6
)(u
14
+ 2u
13
+ ··· + 2u + 1)
· (u
23
+ 9u
22
+ ··· 16u + 8)
c
10
, c
11
((u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
6
)(u
14
2u
13
+ ··· 2u + 1)
· (u
23
+ 9u
22
+ ··· 16u + 8)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y
3
+ 3y
2
+ 2y 1)
12
)(y
14
+ 9y
13
+ ··· + 6y + 1)
· (y
23
+ 12y
22
+ ··· 3072y 4096)
c
2
, c
4
, c
8
c
9
(y
14
+ 16y
13
+ ··· + 25y + 1)(y
23
+ 24y
22
+ ··· + 2y 1)
· (y
36
+ 35y
35
+ ··· 69452y + 3481)
c
3
, c
6
(y
14
4y
13
+ ··· 7y + 1)(y
23
16y
22
+ ··· + 58y 1)
· (y
36
17y
35
+ ··· 71361608y + 3659569)
c
7
, c
10
, c
11
((y
6
7y
5
+ ··· 5y + 1)
6
)(y
14
16y
13
+ ··· + 2y + 1)
· (y
23
23y
22
+ ··· 32y 64)
21