11a
283
(K11a
283
)
A knot diagram
1
Linearized knot diagam
6 9 1 11 2 10 4 3 5 7 8
Solving Sequence
2,9 3,6
1 4 5 10 8 7 11
c
2
c
1
c
3
c
5
c
9
c
8
c
7
c
11
c
4
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.41985 × 10
252
u
85
+ 4.09833 × 10
252
u
84
+ ··· + 1.22301 × 10
255
b 6.27945 × 10
254
,
1.71138 × 10
256
u
85
+ 1.63229 × 10
256
u
84
+ ··· + 1.02611 × 10
258
a + 4.21212 × 10
259
,
u
86
u
85
+ ··· 4313u + 839i
I
u
2
= h6846u
19
8204u
18
+ ··· + 20003b 10945,
1034553u
19
1458425u
18
+ ··· + 1180177a 4013026, u
20
+ 8u
18
+ ··· 3u + 1i
I
u
3
= hu
2
+ b, a 1, u
7
+ u
5
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 113 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.42 × 10
252
u
85
+ 4.10 × 10
252
u
84
+ · · · + 1.22 × 10
255
b 6.28 ×
10
254
, 1.71 × 10
256
u
85
+ 1.63 × 10
256
u
84
+ · · · + 1.03 × 10
258
a + 4.21 ×
10
259
, u
86
u
85
+ · · · 4313u + 839i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
0.0166784u
85
0.0159077u
84
+ ··· + 114.699u 41.0496
0.00279626u
85
0.00335102u
84
+ ··· + 16.6837u + 0.513442
a
1
=
0.00695378u
85
0.000700898u
84
+ ··· + 21.3589u + 9.44845
0.0173378u
85
+ 0.0147297u
84
+ ··· 102.814u + 31.6226
a
4
=
0.00332478u
85
+ 0.000929287u
84
+ ··· 42.6202u + 8.23376
0.00603896u
85
0.00447428u
84
+ ··· + 28.7233u 4.85824
a
5
=
0.0138821u
85
0.0125566u
84
+ ··· + 98.0158u 41.5631
0.00279626u
85
0.00335102u
84
+ ··· + 16.6837u + 0.513442
a
10
=
0.00463099u
85
0.00234483u
84
+ ··· 22.7331u 11.9767
0.00886090u
85
0.00901715u
84
+ ··· + 82.5953u 20.3806
a
8
=
u
u
3
+ u
a
7
=
0.00673940u
85
0.00311584u
84
+ ··· + 1.27697u + 5.88708
0.00790831u
85
0.0112601u
84
+ ··· + 23.7107u 8.85273
a
11
=
0.0104754u
85
0.00701084u
84
+ ··· + 43.4674u + 6.56795
0.0169282u
85
+ 0.0130534u
84
+ ··· 109.942u + 32.1637
a
11
=
0.0104754u
85
0.00701084u
84
+ ··· + 43.4674u + 6.56795
0.0169282u
85
+ 0.0130534u
84
+ ··· 109.942u + 32.1637
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0966063u
85
+ 0.0534792u
84
+ ··· 636.168u + 175.613
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
86
2u
85
+ ··· + 4061u + 367
c
2
, c
8
u
86
+ u
85
+ ··· + 4313u + 839
c
3
u
86
10u
85
+ ··· 578u + 79
c
4
u
86
5u
85
+ ··· + 16u + 1
c
6
, c
10
u
86
+ 6u
85
+ ··· 2700u + 200
c
7
u
86
+ 4u
85
+ ··· + 379u + 169
c
9
u
86
+ u
85
+ ··· + 760266u + 130321
c
11
u
86
+ 5u
85
+ ··· + 690u + 179
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
86
+ 58y
85
+ ··· 1366917y + 134689
c
2
, c
8
y
86
+ 73y
85
+ ··· 7899685y + 703921
c
3
y
86
14y
85
+ ··· 153964y + 6241
c
4
y
86
5y
85
+ ··· + 200y + 1
c
6
, c
10
y
86
58y
85
+ ··· 4211600y + 40000
c
7
y
86
+ 14y
85
+ ··· + 1122169y + 28561
c
9
y
86
+ 15y
85
+ ··· + 56388593490y + 16983563041
c
11
y
86
19y
85
+ ··· 1161312y + 32041
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.171045 + 0.950486I
a = 1.09878 + 2.26346I
b = 0.131608 + 0.877201I
1.71658 + 1.70443I 0
u = 0.171045 0.950486I
a = 1.09878 2.26346I
b = 0.131608 0.877201I
1.71658 1.70443I 0
u = 0.138042 + 1.039980I
a = 0.718636 + 0.240255I
b = 0.712835 + 0.801059I
1.54553 2.70454I 0
u = 0.138042 1.039980I
a = 0.718636 0.240255I
b = 0.712835 0.801059I
1.54553 + 2.70454I 0
u = 0.942410 + 0.113313I
a = 0.158648 + 0.099081I
b = 0.455331 + 1.100300I
2.54751 + 4.69288I 0
u = 0.942410 0.113313I
a = 0.158648 0.099081I
b = 0.455331 1.100300I
2.54751 4.69288I 0
u = 1.066980 + 0.013369I
a = 0.510040 0.562808I
b = 0.334819 1.068070I
1.17731 + 3.15707I 0
u = 1.066980 0.013369I
a = 0.510040 + 0.562808I
b = 0.334819 + 1.068070I
1.17731 3.15707I 0
u = 0.597375 + 0.937187I
a = 0.251462 + 0.325322I
b = 0.177390 0.920746I
0.43505 + 5.35734I 0
u = 0.597375 0.937187I
a = 0.251462 0.325322I
b = 0.177390 + 0.920746I
0.43505 5.35734I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.139913 + 1.108380I
a = 0.618464 + 0.196975I
b = 1.38818 + 0.35705I
2.56807 + 2.29900I 0
u = 0.139913 1.108380I
a = 0.618464 0.196975I
b = 1.38818 0.35705I
2.56807 2.29900I 0
u = 0.499950 + 1.009240I
a = 0.185257 0.499774I
b = 0.305862 + 0.044581I
0.75390 3.34791I 0
u = 0.499950 1.009240I
a = 0.185257 + 0.499774I
b = 0.305862 0.044581I
0.75390 + 3.34791I 0
u = 0.821993 + 0.102956I
a = 0.655973 + 0.796214I
b = 0.798776 + 0.329650I
4.82477 6.81993I 10.08009 + 4.71115I
u = 0.821993 0.102956I
a = 0.655973 0.796214I
b = 0.798776 0.329650I
4.82477 + 6.81993I 10.08009 4.71115I
u = 0.199723 + 1.160210I
a = 0.01752 3.29341I
b = 0.083947 0.961969I
0.51451 6.45826I 0
u = 0.199723 1.160210I
a = 0.01752 + 3.29341I
b = 0.083947 + 0.961969I
0.51451 + 6.45826I 0
u = 0.512127 + 0.559479I
a = 1.93509 0.19891I
b = 0.484188 0.707780I
2.45089 + 3.89737I 6.40177 6.57898I
u = 0.512127 0.559479I
a = 1.93509 + 0.19891I
b = 0.484188 + 0.707780I
2.45089 3.89737I 6.40177 + 6.57898I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.057454 + 1.246560I
a = 0.37475 1.69448I
b = 0.60933 1.42722I
7.29903 + 0.31589I 0
u = 0.057454 1.246560I
a = 0.37475 + 1.69448I
b = 0.60933 + 1.42722I
7.29903 0.31589I 0
u = 0.412211 + 1.181190I
a = 0.60682 1.66020I
b = 0.23005 1.40830I
4.58690 + 2.56469I 0
u = 0.412211 1.181190I
a = 0.60682 + 1.66020I
b = 0.23005 + 1.40830I
4.58690 2.56469I 0
u = 0.163970 + 1.241080I
a = 1.07090 2.17182I
b = 0.44077 1.34783I
4.48521 6.86672I 0
u = 0.163970 1.241080I
a = 1.07090 + 2.17182I
b = 0.44077 + 1.34783I
4.48521 + 6.86672I 0
u = 1.203600 + 0.344486I
a = 0.387817 + 0.567429I
b = 0.500645 + 1.141340I
2.30617 + 11.65450I 0
u = 1.203600 0.344486I
a = 0.387817 0.567429I
b = 0.500645 1.141340I
2.30617 11.65450I 0
u = 0.662167 + 0.294205I
a = 0.461786 + 0.309921I
b = 0.610997 + 1.105130I
2.64706 4.13307I 10.06650 + 7.67107I
u = 0.662167 0.294205I
a = 0.461786 0.309921I
b = 0.610997 1.105130I
2.64706 + 4.13307I 10.06650 7.67107I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.297470 + 1.255920I
a = 0.254293 0.144773I
b = 1.077280 0.185503I
3.52274 + 6.07547I 0
u = 0.297470 1.255920I
a = 0.254293 + 0.144773I
b = 1.077280 + 0.185503I
3.52274 6.07547I 0
u = 0.689327 + 0.123250I
a = 0.062912 + 1.059920I
b = 0.395529 + 0.164925I
0.06236 2.46466I 6.83396 + 3.77647I
u = 0.689327 0.123250I
a = 0.062912 1.059920I
b = 0.395529 0.164925I
0.06236 + 2.46466I 6.83396 3.77647I
u = 0.226747 + 1.282130I
a = 0.093690 0.200426I
b = 0.679000 0.036087I
4.40326 + 0.41121I 0
u = 0.226747 1.282130I
a = 0.093690 + 0.200426I
b = 0.679000 + 0.036087I
4.40326 0.41121I 0
u = 0.366588 + 1.260050I
a = 0.098420 0.273942I
b = 0.880454 + 0.085541I
2.11426 4.00334I 0
u = 0.366588 1.260050I
a = 0.098420 + 0.273942I
b = 0.880454 0.085541I
2.11426 + 4.00334I 0
u = 0.099264 + 1.314460I
a = 0.406154 + 0.976917I
b = 0.732172 + 0.382522I
0.50203 + 2.48920I 0
u = 0.099264 1.314460I
a = 0.406154 0.976917I
b = 0.732172 0.382522I
0.50203 2.48920I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.173406 + 1.315340I
a = 0.96739 + 1.70783I
b = 0.294787 + 1.239180I
8.25891 + 3.00812I 0
u = 0.173406 1.315340I
a = 0.96739 1.70783I
b = 0.294787 1.239180I
8.25891 3.00812I 0
u = 0.409443 + 1.263900I
a = 0.49046 + 1.63199I
b = 0.65824 + 1.38913I
1.10942 9.46579I 0
u = 0.409443 1.263900I
a = 0.49046 1.63199I
b = 0.65824 1.38913I
1.10942 + 9.46579I 0
u = 0.050986 + 1.328260I
a = 0.22173 + 1.98084I
b = 0.21254 + 1.53110I
6.21226 + 5.37580I 0
u = 0.050986 1.328260I
a = 0.22173 1.98084I
b = 0.21254 1.53110I
6.21226 5.37580I 0
u = 0.232857 + 1.345360I
a = 0.25117 + 2.15847I
b = 0.313690 + 1.368680I
5.14196 + 5.75508I 0
u = 0.232857 1.345360I
a = 0.25117 2.15847I
b = 0.313690 1.368680I
5.14196 5.75508I 0
u = 0.500434 + 0.387851I
a = 0.492345 + 0.241918I
b = 0.431811 + 0.295599I
0.948430 0.603776I 9.01347 + 4.18465I
u = 0.500434 0.387851I
a = 0.492345 0.241918I
b = 0.431811 0.295599I
0.948430 + 0.603776I 9.01347 4.18465I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.042870 + 1.391350I
a = 0.08872 1.61352I
b = 0.455918 1.278250I
6.14811 0.65193I 0
u = 0.042870 1.391350I
a = 0.08872 + 1.61352I
b = 0.455918 + 1.278250I
6.14811 + 0.65193I 0
u = 0.359631 + 1.348720I
a = 0.470643 + 0.056389I
b = 1.242270 0.193872I
0.23737 11.07660I 0
u = 0.359631 1.348720I
a = 0.470643 0.056389I
b = 1.242270 + 0.193872I
0.23737 + 11.07660I 0
u = 0.596230 + 0.035731I
a = 0.684599 + 0.947731I
b = 0.411492 + 0.980008I
0.80790 2.80909I 5.98332 0.21201I
u = 0.596230 0.035731I
a = 0.684599 0.947731I
b = 0.411492 0.980008I
0.80790 + 2.80909I 5.98332 + 0.21201I
u = 0.417303 + 0.405708I
a = 0.14693 + 2.04390I
b = 0.765463 + 0.496537I
4.56662 0.11637I 12.84009 2.25680I
u = 0.417303 0.405708I
a = 0.14693 2.04390I
b = 0.765463 0.496537I
4.56662 + 0.11637I 12.84009 + 2.25680I
u = 0.26413 + 1.40109I
a = 0.28448 1.99461I
b = 0.66711 1.46071I
2.71748 7.52821I 0
u = 0.26413 1.40109I
a = 0.28448 + 1.99461I
b = 0.66711 + 1.46071I
2.71748 + 7.52821I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.10686 + 1.50124I
a = 0.245884 + 1.141140I
b = 0.783069 + 1.067070I
5.72875 + 3.11452I 0
u = 0.10686 1.50124I
a = 0.245884 1.141140I
b = 0.783069 1.067070I
5.72875 3.11452I 0
u = 0.22724 + 1.49618I
a = 0.81530 1.31196I
b = 0.020931 0.994862I
3.17742 + 0.08844I 0
u = 0.22724 1.49618I
a = 0.81530 + 1.31196I
b = 0.020931 + 0.994862I
3.17742 0.08844I 0
u = 0.54898 + 1.41093I
a = 0.82747 + 1.53406I
b = 0.517955 + 1.251330I
5.61570 + 9.08985I 0
u = 0.54898 1.41093I
a = 0.82747 1.53406I
b = 0.517955 1.251330I
5.61570 9.08985I 0
u = 1.41382 + 0.54274I
a = 0.150367 0.669536I
b = 0.207903 1.033730I
2.09582 4.89045I 0
u = 1.41382 0.54274I
a = 0.150367 + 0.669536I
b = 0.207903 + 1.033730I
2.09582 + 4.89045I 0
u = 0.68545 + 1.36638I
a = 0.30951 + 1.38848I
b = 0.088050 + 0.737680I
1.18894 + 2.12493I 0
u = 0.68545 1.36638I
a = 0.30951 1.38848I
b = 0.088050 0.737680I
1.18894 2.12493I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.48985 + 1.50866I
a = 0.52759 1.65020I
b = 0.63184 1.35216I
3.4892 + 17.6295I 0
u = 0.48985 1.50866I
a = 0.52759 + 1.65020I
b = 0.63184 + 1.35216I
3.4892 17.6295I 0
u = 0.386003 + 0.111568I
a = 0.72617 1.21676I
b = 1.015930 0.376348I
4.95207 + 1.65937I 17.2147 3.6067I
u = 0.386003 0.111568I
a = 0.72617 + 1.21676I
b = 1.015930 + 0.376348I
4.95207 1.65937I 17.2147 + 3.6067I
u = 0.48750 + 1.53880I
a = 0.43487 + 1.58941I
b = 0.44392 + 1.36956I
8.42324 11.27470I 0
u = 0.48750 1.53880I
a = 0.43487 1.58941I
b = 0.44392 1.36956I
8.42324 + 11.27470I 0
u = 1.29645 + 0.97439I
a = 0.150528 + 0.680017I
b = 0.180507 + 0.936717I
0.43071 3.88005I 0
u = 1.29645 0.97439I
a = 0.150528 0.680017I
b = 0.180507 0.936717I
0.43071 + 3.88005I 0
u = 0.360463 + 0.104511I
a = 1.71701 + 1.38281I
b = 0.099604 1.152090I
3.81257 + 0.89485I 2.25949 1.18834I
u = 0.360463 0.104511I
a = 1.71701 1.38281I
b = 0.099604 + 1.152090I
3.81257 0.89485I 2.25949 + 1.18834I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.67498 + 1.51204I
a = 0.37015 1.38509I
b = 0.106244 1.278550I
5.01653 + 3.29033I 0
u = 0.67498 1.51204I
a = 0.37015 + 1.38509I
b = 0.106244 + 1.278550I
5.01653 3.29033I 0
u = 0.46654 + 1.63346I
a = 0.45448 1.42613I
b = 0.380524 1.198130I
7.86731 4.29450I 0
u = 0.46654 1.63346I
a = 0.45448 + 1.42613I
b = 0.380524 + 1.198130I
7.86731 + 4.29450I 0
u = 0.176850 + 0.211457I
a = 0.89004 + 2.77259I
b = 0.176063 1.280020I
1.21164 + 5.29604I 2.45054 8.48280I
u = 0.176850 0.211457I
a = 0.89004 2.77259I
b = 0.176063 + 1.280020I
1.21164 5.29604I 2.45054 + 8.48280I
13
II. I
u
2
= h6846u
19
8204u
18
+ · · · + 20003b 10945, 1.03 × 10
6
u
19
1.46 ×
10
6
u
18
+ · · · + 1.18 × 10
6
a 4.01 × 10
6
, u
20
+ 8u
18
+ · · · 3u + 1i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
0.876608u
19
+ 1.23577u
18
+ ··· + 8.53335u + 3.40036
0.342249u
19
+ 0.410138u
18
+ ··· 6.46158u + 0.547168
a
1
=
1.40383u
19
0.0923734u
18
+ ··· 20.8719u + 3.90800
0.167425u
19
0.0554417u
18
+ ··· + 6.79533u 1.60261
a
4
=
1.36417u
19
+ 0.513748u
18
+ ··· + 15.8727u + 4.11256
0.305317u
19
0.405635u
18
+ ··· 3.25843u 1.02408
a
5
=
1.21886u
19
+ 0.825630u
18
+ ··· + 14.9949u + 2.85319
0.342249u
19
+ 0.410138u
18
+ ··· 6.46158u + 0.547168
a
10
=
0.174699u
19
0.367753u
18
+ ··· + 16.3113u 10.5613
0.0369317u
19
0.184227u
18
+ ··· + 0.796852u + 1.57125
a
8
=
u
u
3
+ u
a
7
=
1.94985u
19
0.957305u
18
+ ··· + 31.9571u 11.4011
0.576662u
19
+ 0.967471u
18
+ ··· 7.65168u + 3.29611
a
11
=
1.29989u
19
0.143133u
18
+ ··· 20.2101u + 4.10267
0.0511322u
19
0.298609u
18
+ ··· + 6.38976u 1.84804
a
11
=
1.29989u
19
0.143133u
18
+ ··· 20.2101u + 4.10267
0.0511322u
19
0.298609u
18
+ ··· + 6.38976u 1.84804
(ii) Obstruction class = 1
(iii) Cusp Shapes =
296410
1180177
u
19
1621082
1180177
u
18
+ ···
15966826
1180177
u +
14861551
1180177
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
u
19
+ ··· + 3u + 1
c
2
u
20
+ 8u
18
+ ··· 3u + 1
c
3
u
20
+ 3u
19
+ ··· 2u + 1
c
4
u
20
7u
18
+ ··· 4u + 1
c
5
u
20
+ u
19
+ ··· 3u + 1
c
6
u
20
8u
18
+ ··· + 2u + 3
c
7
u
20
u
19
+ ··· 3u + 1
c
8
u
20
+ 8u
18
+ ··· + 3u + 1
c
9
u
20
3u
18
+ ··· 6u + 1
c
10
u
20
8u
18
+ ··· 2u + 3
c
11
u
20
4u
17
+ ··· 2u
2
+ 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
20
+ 9y
19
+ ··· + 15y + 1
c
2
, c
8
y
20
+ 16y
19
+ ··· + 27y + 1
c
3
y
20
11y
19
+ ··· + 16y + 1
c
4
y
20
14y
19
+ ··· 4y + 1
c
6
, c
10
y
20
16y
19
+ ··· + 62y + 9
c
7
y
20
+ 5y
19
+ ··· + 5y + 1
c
9
y
20
6y
19
+ ··· 26y + 1
c
11
y
20
+ 12y
18
+ ··· 4y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.946175 + 0.385588I
a = 0.214235 + 0.558661I
b = 0.269177 + 1.077330I
0.64266 3.90221I 3.24651 + 7.37049I
u = 0.946175 0.385588I
a = 0.214235 0.558661I
b = 0.269177 1.077330I
0.64266 + 3.90221I 3.24651 7.37049I
u = 0.310493 + 0.924049I
a = 0.38415 1.67139I
b = 0.122898 + 0.479259I
1.71598 6.19605I 8.61255 + 6.55788I
u = 0.310493 0.924049I
a = 0.38415 + 1.67139I
b = 0.122898 0.479259I
1.71598 + 6.19605I 8.61255 6.55788I
u = 0.591462 + 0.713970I
a = 0.402644 0.443888I
b = 0.208294 0.706719I
1.58446 + 3.70556I 0.94050 4.83089I
u = 0.591462 0.713970I
a = 0.402644 + 0.443888I
b = 0.208294 + 0.706719I
1.58446 3.70556I 0.94050 + 4.83089I
u = 0.002874 + 1.212570I
a = 0.870653 0.229034I
b = 1.42573 + 0.06190I
1.65051 1.14565I 6.04640 + 4.20488I
u = 0.002874 1.212570I
a = 0.870653 + 0.229034I
b = 1.42573 0.06190I
1.65051 + 1.14565I 6.04640 4.20488I
u = 0.002126 + 0.708303I
a = 0.640262 + 0.910371I
b = 0.901962 + 0.053941I
3.67242 + 1.15933I 9.29729 1.48128I
u = 0.002126 0.708303I
a = 0.640262 0.910371I
b = 0.901962 0.053941I
3.67242 1.15933I 9.29729 + 1.48128I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.273746 + 1.297500I
a = 0.66833 + 2.18325I
b = 0.48471 + 1.43675I
3.70849 + 7.77575I 1.98042 8.91503I
u = 0.273746 1.297500I
a = 0.66833 2.18325I
b = 0.48471 1.43675I
3.70849 7.77575I 1.98042 + 8.91503I
u = 0.15872 + 1.40819I
a = 0.46639 1.33897I
b = 0.520872 1.129990I
7.04665 2.30270I 1.55456 + 0.79605I
u = 0.15872 1.40819I
a = 0.46639 + 1.33897I
b = 0.520872 + 1.129990I
7.04665 + 2.30270I 1.55456 0.79605I
u = 0.85387 + 1.18820I
a = 0.71330 + 1.27008I
b = 0.028808 + 0.787340I
0.96215 + 2.51362I 0.64139 9.41977I
u = 0.85387 1.18820I
a = 0.71330 1.27008I
b = 0.028808 0.787340I
0.96215 2.51362I 0.64139 + 9.41977I
u = 0.56839 + 1.35898I
a = 0.46559 1.52661I
b = 0.125964 1.327280I
4.70501 3.26631I 10.94198 + 7.13391I
u = 0.56839 1.35898I
a = 0.46559 + 1.52661I
b = 0.125964 + 1.327280I
4.70501 + 3.26631I 10.94198 7.13391I
u = 0.079342 + 0.301023I
a = 2.72917 + 2.48490I
b = 0.526131 0.810997I
3.10647 + 2.21537I 10.72853 2.81043I
u = 0.079342 0.301023I
a = 2.72917 2.48490I
b = 0.526131 + 0.810997I
3.10647 2.21537I 10.72853 + 2.81043I
18
III. I
u
3
= hu
2
+ b, a 1, u
7
+ u
5
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
4
=
u
4
+ u
2
+ 1
u
6
u
2
a
5
=
u
2
+ 1
u
2
a
10
=
u
5
+ 2u
3
+ u
u
5
u
3
+ u
a
8
=
u
u
3
+ u
a
7
=
u
5
+ 2u
3
+ u + 1
u
5
u
3
u
2
+ u
a
11
=
1
u
2
a
11
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
7
+ 2u
6
+ u
5
+ 2u
4
+ 2u
3
+ u 1
c
2
, c
8
, c
11
u
7
+ u
5
+ u 1
c
4
u
7
+ 2u
6
3u
5
2u
4
+ 10u
3
8u
2
+ u + 1
c
6
, c
10
(u 1)
7
c
7
, c
9
u
7
+ 3u
5
4u
4
+ 4u
3
6u
2
+ 3u 2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
y
7
2y
6
3y
5
+ 2y
4
+ 10y
3
+ 8y
2
+ y 1
c
2
, c
8
, c
11
y
7
+ 2y
6
+ y
5
+ 2y
4
+ 2y
3
+ y 1
c
4
y
7
10y
6
+ 37y
5
30y
4
+ 58y
3
40y
2
+ 17y 1
c
6
, c
10
(y 1)
7
c
7
, c
9
y
7
+ 6y
6
+ 17y
5
+ 14y
4
14y
3
28y
2
15y 4
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.862570 + 0.551757I
a = 1.00000
b = 0.439591 0.951858I
1.64493 6.00000
u = 0.862570 0.551757I
a = 1.00000
b = 0.439591 + 0.951858I
1.64493 6.00000
u = 0.588920 + 0.721443I
a = 1.00000
b = 0.173654 + 0.849744I
1.64493 6.00000
u = 0.588920 0.721443I
a = 1.00000
b = 0.173654 0.849744I
1.64493 6.00000
u = 0.084251 + 1.236620I
a = 1.00000
b = 1.52212 0.20837I
1.64493 6.00000
u = 0.084251 1.236620I
a = 1.00000
b = 1.52212 + 0.20837I
1.64493 6.00000
u = 0.715802
a = 1.00000
b = 0.512372
1.64493 6.00000
22
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
7
+ 2u
6
+ u
5
+ 2u
4
+ 2u
3
+ u 1)(u
20
u
19
+ ··· + 3u + 1)
· (u
86
2u
85
+ ··· + 4061u + 367)
c
2
(u
7
+ u
5
+ u 1)(u
20
+ 8u
18
+ ··· 3u + 1)
· (u
86
+ u
85
+ ··· + 4313u + 839)
c
3
(u
7
+ 2u
6
+ u
5
+ 2u
4
+ 2u
3
+ u 1)(u
20
+ 3u
19
+ ··· 2u + 1)
· (u
86
10u
85
+ ··· 578u + 79)
c
4
(u
7
+ 2u
6
+ ··· + u + 1)(u
20
7u
18
+ ··· 4u + 1)
· (u
86
5u
85
+ ··· + 16u + 1)
c
5
(u
7
+ 2u
6
+ u
5
+ 2u
4
+ 2u
3
+ u 1)(u
20
+ u
19
+ ··· 3u + 1)
· (u
86
2u
85
+ ··· + 4061u + 367)
c
6
((u 1)
7
)(u
20
8u
18
+ ··· + 2u + 3)(u
86
+ 6u
85
+ ··· 2700u + 200)
c
7
(u
7
+ 3u
5
+ ··· + 3u 2)(u
20
u
19
+ ··· 3u + 1)
· (u
86
+ 4u
85
+ ··· + 379u + 169)
c
8
(u
7
+ u
5
+ u 1)(u
20
+ 8u
18
+ ··· + 3u + 1)
· (u
86
+ u
85
+ ··· + 4313u + 839)
c
9
(u
7
+ 3u
5
+ ··· + 3u 2)(u
20
3u
18
+ ··· 6u + 1)
· (u
86
+ u
85
+ ··· + 760266u + 130321)
c
10
((u 1)
7
)(u
20
8u
18
+ ··· 2u + 3)(u
86
+ 6u
85
+ ··· 2700u + 200)
c
11
(u
7
+ u
5
+ u 1)(u
20
4u
17
+ ··· 2u
2
+ 1)
· (u
86
+ 5u
85
+ ··· + 690u + 179)
23
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
7
2y
6
+ ··· + y 1)(y
20
+ 9y
19
+ ··· + 15y + 1)
· (y
86
+ 58y
85
+ ··· 1366917y + 134689)
c
2
, c
8
(y
7
+ 2y
6
+ y
5
+ 2y
4
+ 2y
3
+ y 1)(y
20
+ 16y
19
+ ··· + 27y + 1)
· (y
86
+ 73y
85
+ ··· 7899685y + 703921)
c
3
(y
7
2y
6
3y
5
+ 2y
4
+ 10y
3
+ 8y
2
+ y 1)
· (y
20
11y
19
+ ··· + 16y + 1)(y
86
14y
85
+ ··· 153964y + 6241)
c
4
(y
7
10y
6
+ 37y
5
30y
4
+ 58y
3
40y
2
+ 17y 1)
· (y
20
14y
19
+ ··· 4y + 1)(y
86
5y
85
+ ··· + 200y + 1)
c
6
, c
10
((y 1)
7
)(y
20
16y
19
+ ··· + 62y + 9)
· (y
86
58y
85
+ ··· 4211600y + 40000)
c
7
(y
7
+ 6y
6
+ 17y
5
+ 14y
4
14y
3
28y
2
15y 4)
· (y
20
+ 5y
19
+ ··· + 5y + 1)(y
86
+ 14y
85
+ ··· + 1122169y + 28561)
c
9
(y
7
+ 6y
6
+ 17y
5
+ 14y
4
14y
3
28y
2
15y 4)
· (y
20
6y
19
+ ··· 26y + 1)
· (y
86
+ 15y
85
+ ··· + 56388593490y + 16983563041)
c
11
(y
7
+ 2y
6
+ y
5
+ 2y
4
+ 2y
3
+ y 1)(y
20
+ 12y
18
+ ··· 4y + 1)
· (y
86
19y
85
+ ··· 1161312y + 32041)
24