11a
294
(K11a
294
)
A knot diagram
1
Linearized knot diagam
9 5 1 8 2 11 10 3 6 7 4
Solving Sequence
6,11 2,7
5 3 10 8 4 9 1
c
6
c
5
c
2
c
10
c
7
c
4
c
9
c
1
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−8634895226u
23
5433253456u
22
+ ··· + 735180934969b 781237782063,
763967991611u
23
+ 23673073992u
22
+ ··· + 2940723739876a + 7856566749775,
u
24
+ 10u
22
+ ··· + 15u 4i
I
u
2
= hu
19
a + 2u
19
+ ··· 2a 1, 2u
19
a 4u
19
+ ··· + 6a + 15, u
20
u
19
+ ··· 2u 1i
I
u
3
= hb + 1, 2u
2
+ 2a 2u 3, u
3
+ u
2
+ 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 67 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−8.63×10
9
u
23
5.43×10
9
u
22
+· · ·+ 7.35×10
11
b7.81×10
11
, 7.64×10
11
u
23
+
2.37 × 10
10
u
22
+ · · · + 2.94 × 10
12
a + 7.86 × 10
12
, u
24
+ 10u
22
+ · · · + 15u 4i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
0.259789u
23
0.00805008u
22
+ ··· + 6.57173u 2.67164
0.0117453u
23
+ 0.00739036u
22
+ ··· 0.781959u + 1.06265
a
7
=
1
u
2
a
5
=
0.249773u
23
0.00306836u
22
+ ··· 5.95799u + 2.87741
0.0126772u
23
0.0249283u
22
+ ··· + 1.51797u 1.05571
a
3
=
0.517622u
23
0.0138817u
22
+ ··· + 12.5338u 5.08757
0.0138817u
23
+ 0.00372967u
22
+ ··· 2.67676u + 2.07049
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
4
=
0.265662u
23
+ 0.0117453u
22
+ ··· 6.46270u + 3.20297
0.00805008u
23
+ 0.0403920u
22
+ ··· + 1.22519u 1.03916
a
9
=
u
3
2u
u
3
+ u
a
1
=
0.263929u
23
0.0126772u
22
+ ··· + 6.43357u 2.44096
0.00306836u
23
0.0138773u
22
+ ··· 0.869183u + 0.999092
a
1
=
0.263929u
23
0.0126772u
22
+ ··· + 6.43357u 2.44096
0.00306836u
23
0.0138773u
22
+ ··· 0.869183u + 0.999092
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
818436095265
735180934969
u
23
+
92606395200
735180934969
u
22
+ ···
104556151676103
2940723739876
u +
5519991831807
735180934969
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
8(8u
24
12u
23
+ ··· u + 1)
c
2
, c
3
, c
5
c
11
u
24
+ 3u
23
+ ··· + 6u 1
c
6
, c
7
, c
10
u
24
+ 10u
22
+ ··· 15u 4
c
8
u
24
+ 3u
23
+ ··· + 224u + 128
c
9
u
24
6u
22
+ ··· 1079u 676
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
64(64y
24
656y
23
+ ··· 7y + 1)
c
2
, c
3
, c
5
c
11
y
24
+ 13y
23
+ ··· 38y + 1
c
6
, c
7
, c
10
y
24
+ 20y
23
+ ··· 97y + 16
c
8
y
24
7y
23
+ ··· 226304y + 16384
c
9
y
24
12y
23
+ ··· 1380561y + 456976
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.021460 + 0.275515I
a = 0.39552 1.65501I
b = 0.047276 + 1.186360I
7.49230 1.49785I 16.5794 + 3.5131I
u = 1.021460 0.275515I
a = 0.39552 + 1.65501I
b = 0.047276 1.186360I
7.49230 + 1.49785I 16.5794 3.5131I
u = 0.870278 + 0.206907I
a = 0.50041 2.31304I
b = 0.49469 + 1.37599I
9.3482 + 11.6156I 9.04984 7.14425I
u = 0.870278 0.206907I
a = 0.50041 + 2.31304I
b = 0.49469 1.37599I
9.3482 11.6156I 9.04984 + 7.14425I
u = 0.711520 + 0.880248I
a = 0.496210 + 1.180490I
b = 0.138302 1.193200I
5.61526 4.36903I 11.9512 + 7.5869I
u = 0.711520 0.880248I
a = 0.496210 1.180490I
b = 0.138302 + 1.193200I
5.61526 + 4.36903I 11.9512 7.5869I
u = 0.507475 + 1.020800I
a = 0.471884 + 1.006850I
b = 0.411983 1.346680I
6.85359 6.74871I 7.12828 + 3.44529I
u = 0.507475 1.020800I
a = 0.471884 1.006850I
b = 0.411983 + 1.346680I
6.85359 + 6.74871I 7.12828 3.44529I
u = 0.263649 + 1.293920I
a = 0.137301 + 0.951214I
b = 1.347430 + 0.188650I
4.17750 + 3.32302I 7.49326 7.01534I
u = 0.263649 1.293920I
a = 0.137301 0.951214I
b = 1.347430 0.188650I
4.17750 3.32302I 7.49326 + 7.01534I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.102906 + 1.325920I
a = 0.978679 + 0.749632I
b = 0.912691 0.587846I
5.99931 + 2.29383I 3.48033 0.30083I
u = 0.102906 1.325920I
a = 0.978679 0.749632I
b = 0.912691 + 0.587846I
5.99931 2.29383I 3.48033 + 0.30083I
u = 0.656566
a = 1.48947
b = 1.29551
0.112715 17.2960
u = 0.181673 + 1.332990I
a = 0.477910 + 0.021115I
b = 0.263704 + 0.229700I
3.41691 2.41506I 4.35202 + 1.54076I
u = 0.181673 1.332990I
a = 0.477910 0.021115I
b = 0.263704 0.229700I
3.41691 + 2.41506I 4.35202 1.54076I
u = 0.36901 + 1.39774I
a = 1.48756 1.23046I
b = 0.55509 + 1.37302I
4.2704 + 16.0735I 4.86533 8.67439I
u = 0.36901 1.39774I
a = 1.48756 + 1.23046I
b = 0.55509 1.37302I
4.2704 16.0735I 4.86533 + 8.67439I
u = 0.45316 + 1.40935I
a = 0.831561 1.018120I
b = 0.207861 + 1.159740I
2.26090 6.77325I 8.15326 + 8.68487I
u = 0.45316 1.40935I
a = 0.831561 + 1.018120I
b = 0.207861 1.159740I
2.26090 + 6.77325I 8.15326 8.68487I
u = 0.496850
a = 0.482259
b = 0.161437
0.853473 12.2560
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.11292 + 1.52095I
a = 0.621242 + 0.178604I
b = 0.381421 1.074640I
2.48001 6.89114I 2.89593 + 8.03535I
u = 0.11292 1.52095I
a = 0.621242 0.178604I
b = 0.381421 + 1.074640I
2.48001 + 6.89114I 2.89593 8.03535I
u = 0.287554 + 0.235788I
a = 0.37075 + 1.66780I
b = 0.662890 0.292141I
1.22051 + 0.86188I 4.63925 4.32694I
u = 0.287554 0.235788I
a = 0.37075 1.66780I
b = 0.662890 + 0.292141I
1.22051 0.86188I 4.63925 + 4.32694I
7
II. I
u
2
=
hu
19
a+2u
19
+· · ·2a1, 2u
19
a4u
19
+· · ·+6a+15, u
20
u
19
+· · ·2u1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
a
u
19
a 2u
19
+ ··· + 2a + 1
a
7
=
1
u
2
a
5
=
2u
19
a 4u
19
+ ··· + a + 7
u
19
a u
19
+ ··· + 2a + 3
a
3
=
u
19
8u
17
26u
15
42u
13
31u
11
2u
9
+ 10u
7
+ 4u
5
u
3
2u
u
19
u
18
+ ··· + 2u + 1
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
4
=
2u
19
a u
19
+ ··· 7u + 3
2u
19
+ 2u
18
+ ··· 2u + 2
a
9
=
u
3
2u
u
3
+ u
a
1
=
2u
19
a u
19
+ ··· + 2a 2
u
18
a 2u
19
+ ··· + 2a + 2
a
1
=
2u
19
a u
19
+ ··· + 2a 2
u
18
a 2u
19
+ ··· + 2a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
18
4u
17
+ 32u
16
28u
15
+ 104u
14
76u
13
+ 164u
12
92u
11
+
104u
10
32u
9
28u
8
+ 20u
7
60u
6
+ 4u
5
4u
4
8u
3
+ 16u
2
+ 4u + 10
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
40
3u
39
+ ··· 60100u + 13049
c
2
, c
3
, c
5
c
11
u
40
7u
39
+ ··· 2u + 1
c
6
, c
7
, c
10
(u
20
+ u
19
+ ··· + 2u 1)
2
c
8
(u
20
u
19
+ ··· + 3u
2
1)
2
c
9
(u
20
u
19
+ ··· + 4u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
40
21y
39
+ ··· 1779930400y + 170276401
c
2
, c
3
, c
5
c
11
y
40
+ 27y
39
+ ··· + 40y
2
+ 1
c
6
, c
7
, c
10
(y
20
+ 17y
19
+ ··· 6y + 1)
2
c
8
(y
20
7y
19
+ ··· 6y + 1)
2
c
9
(y
20
11y
19
+ ··· 6y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.274747 + 1.069600I
a = 0.650977 1.009380I
b = 0.31766 + 1.39547I
2.02098 2.13456I 4.50898 + 2.16962I
u = 0.274747 + 1.069600I
a = 0.084213 0.753588I
b = 0.918130 0.259874I
2.02098 2.13456I 4.50898 + 2.16962I
u = 0.274747 1.069600I
a = 0.650977 + 1.009380I
b = 0.31766 1.39547I
2.02098 + 2.13456I 4.50898 2.16962I
u = 0.274747 1.069600I
a = 0.084213 + 0.753588I
b = 0.918130 + 0.259874I
2.02098 + 2.13456I 4.50898 2.16962I
u = 0.773104 + 0.153161I
a = 0.829907 0.370587I
b = 1.084140 + 0.080482I
4.77271 + 6.07240I 7.45285 5.87540I
u = 0.773104 + 0.153161I
a = 0.37153 + 2.57431I
b = 0.49433 1.41099I
4.77271 + 6.07240I 7.45285 5.87540I
u = 0.773104 0.153161I
a = 0.829907 + 0.370587I
b = 1.084140 0.080482I
4.77271 6.07240I 7.45285 + 5.87540I
u = 0.773104 0.153161I
a = 0.37153 2.57431I
b = 0.49433 + 1.41099I
4.77271 6.07240I 7.45285 + 5.87540I
u = 0.772326
a = 0.10498 + 2.42938I
b = 0.56866 1.40361I
8.84775 12.4400
u = 0.772326
a = 0.10498 2.42938I
b = 0.56866 + 1.40361I
8.84775 12.4400
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.198534 + 1.239650I
a = 1.83297 0.91329I
b = 0.199750 0.784968I
0.52569 2.16136I 0.73748 + 3.31855I
u = 0.198534 + 1.239650I
a = 0.01849 2.83921I
b = 0.053071 + 1.161370I
0.52569 2.16136I 0.73748 + 3.31855I
u = 0.198534 1.239650I
a = 1.83297 + 0.91329I
b = 0.199750 + 0.784968I
0.52569 + 2.16136I 0.73748 3.31855I
u = 0.198534 1.239650I
a = 0.01849 + 2.83921I
b = 0.053071 1.161370I
0.52569 + 2.16136I 0.73748 3.31855I
u = 0.692333 + 0.156175I
a = 0.333781 + 0.644615I
b = 0.162072 + 0.252940I
3.61438 0.81573I 5.67172 + 1.07888I
u = 0.692333 + 0.156175I
a = 1.37017 + 2.40156I
b = 0.049861 1.112720I
3.61438 0.81573I 5.67172 + 1.07888I
u = 0.692333 0.156175I
a = 0.333781 0.644615I
b = 0.162072 0.252940I
3.61438 + 0.81573I 5.67172 1.07888I
u = 0.692333 0.156175I
a = 1.37017 2.40156I
b = 0.049861 + 1.112720I
3.61438 + 0.81573I 5.67172 1.07888I
u = 0.327541 + 1.260030I
a = 0.653810 + 0.673934I
b = 0.46464 1.49110I
4.94645 + 3.96853I 7.89349 3.79787I
u = 0.327541 + 1.260030I
a = 1.51060 1.23935I
b = 0.67909 + 1.31567I
4.94645 + 3.96853I 7.89349 3.79787I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.327541 1.260030I
a = 0.653810 0.673934I
b = 0.46464 + 1.49110I
4.94645 3.96853I 7.89349 + 3.79787I
u = 0.327541 1.260030I
a = 1.51060 + 1.23935I
b = 0.67909 1.31567I
4.94645 3.96853I 7.89349 + 3.79787I
u = 0.201509 + 0.663357I
a = 0.408683 0.835639I
b = 0.502025 0.160176I
1.62333 2.35832I 2.35225 + 4.49783I
u = 0.201509 + 0.663357I
a = 0.005727 0.731461I
b = 0.195325 + 1.163080I
1.62333 2.35832I 2.35225 + 4.49783I
u = 0.201509 0.663357I
a = 0.408683 + 0.835639I
b = 0.502025 + 0.160176I
1.62333 + 2.35832I 2.35225 4.49783I
u = 0.201509 0.663357I
a = 0.005727 + 0.731461I
b = 0.195325 1.163080I
1.62333 + 2.35832I 2.35225 4.49783I
u = 0.295567 + 1.352050I
a = 0.356054 + 0.330760I
b = 0.392505 + 0.067994I
1.14075 4.43308I 0.68370 + 2.52728I
u = 0.295567 + 1.352050I
a = 1.53457 + 1.07334I
b = 0.177275 1.088720I
1.14075 4.43308I 0.68370 + 2.52728I
u = 0.295567 1.352050I
a = 0.356054 0.330760I
b = 0.392505 0.067994I
1.14075 + 4.43308I 0.68370 2.52728I
u = 0.295567 1.352050I
a = 1.53457 1.07334I
b = 0.177275 + 1.088720I
1.14075 + 4.43308I 0.68370 2.52728I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.328206 + 1.357610I
a = 0.283063 0.801762I
b = 1.159930 0.023595I
0.00745 + 10.05770I 2.70834 7.26612I
u = 0.328206 + 1.357610I
a = 1.50051 + 1.23763I
b = 0.59445 1.40555I
0.00745 + 10.05770I 2.70834 7.26612I
u = 0.328206 1.357610I
a = 0.283063 + 0.801762I
b = 1.159930 + 0.023595I
0.00745 10.05770I 2.70834 + 7.26612I
u = 0.328206 1.357610I
a = 1.50051 1.23763I
b = 0.59445 + 1.40555I
0.00745 10.05770I 2.70834 + 7.26612I
u = 0.022410 + 1.403750I
a = 0.788895 0.405125I
b = 0.676901 + 0.349305I
4.68486 2.84648I 1.60998 + 2.97861I
u = 0.022410 + 1.403750I
a = 0.387309 + 0.213744I
b = 0.495392 + 0.955288I
4.68486 2.84648I 1.60998 + 2.97861I
u = 0.022410 1.403750I
a = 0.788895 + 0.405125I
b = 0.676901 0.349305I
4.68486 + 2.84648I 1.60998 2.97861I
u = 0.022410 1.403750I
a = 0.387309 0.213744I
b = 0.495392 0.955288I
4.68486 + 2.84648I 1.60998 2.97861I
u = 0.358818
a = 4.26389 + 1.88679I
b = 0.123906 + 1.022770I
3.97005 10.7620
u = 0.358818
a = 4.26389 1.88679I
b = 0.123906 1.022770I
3.97005 10.7620
14
III. I
u
3
= hb + 1, 2u
2
+ 2a 2u 3, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
2
=
u
2
+ u +
3
2
1
a
7
=
1
u
2
a
5
=
u
2
+ u +
5
2
1
a
3
=
2u
2
+ 2u + 4
2
a
10
=
u
u
2
u 1
a
8
=
u
2
+ 1
u
2
u 1
a
4
=
u
2
+ u + 2
1
2
u 1
a
9
=
u
2
+ 1
u
2
u 1
a
1
=
u
2
+ u + 2
1
2
u 1
a
1
=
u
2
+ u + 2
1
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
4
u 2
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
8(8u
3
+ 4u
2
1)
c
2
, c
11
(u 1)
3
c
3
, c
5
(u + 1)
3
c
4
8(8u
3
4u
2
+ 1)
c
6
, c
7
u
3
+ u
2
+ 2u + 1
c
8
u
3
c
9
u
3
+ u
2
1
c
10
u
3
u
2
+ 2u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
64(64y
3
16y
2
+ 8y 1)
c
2
, c
3
, c
5
c
11
(y 1)
3
c
6
, c
7
, c
10
y
3
+ 3y
2
+ 2y 1
c
8
y
3
c
9
y
3
y
2
+ 2y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.377439 + 0.744862I
b = 1.00000
4.66906 2.82812I 2.05377 + 0.32679I
u = 0.215080 1.307140I
a = 0.377439 0.744862I
b = 1.00000
4.66906 + 2.82812I 2.05377 0.32679I
u = 0.569840
a = 1.25488
b = 1.00000
0.531480 2.14250
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
64(8u
3
+ 4u
2
1)(8u
24
12u
23
+ ··· u + 1)
· (u
40
3u
39
+ ··· 60100u + 13049)
c
2
, c
11
((u 1)
3
)(u
24
+ 3u
23
+ ··· + 6u 1)(u
40
7u
39
+ ··· 2u + 1)
c
3
, c
5
((u + 1)
3
)(u
24
+ 3u
23
+ ··· + 6u 1)(u
40
7u
39
+ ··· 2u + 1)
c
4
64(8u
3
4u
2
+ 1)(8u
24
12u
23
+ ··· u + 1)
· (u
40
3u
39
+ ··· 60100u + 13049)
c
6
, c
7
(u
3
+ u
2
+ 2u + 1)(u
20
+ u
19
+ ··· + 2u 1)
2
· (u
24
+ 10u
22
+ ··· 15u 4)
c
8
u
3
(u
20
u
19
+ ··· + 3u
2
1)
2
(u
24
+ 3u
23
+ ··· + 224u + 128)
c
9
(u
3
+ u
2
1)(u
20
u
19
+ ··· + 4u 1)
2
· (u
24
6u
22
+ ··· 1079u 676)
c
10
(u
3
u
2
+ 2u 1)(u
20
+ u
19
+ ··· + 2u 1)
2
· (u
24
+ 10u
22
+ ··· 15u 4)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
4096(64y
3
16y
2
+ 8y 1)(64y
24
656y
23
+ ··· 7y + 1)
· (y
40
21y
39
+ ··· 1779930400y + 170276401)
c
2
, c
3
, c
5
c
11
((y 1)
3
)(y
24
+ 13y
23
+ ··· 38y + 1)(y
40
+ 27y
39
+ ··· + 40y
2
+ 1)
c
6
, c
7
, c
10
(y
3
+ 3y
2
+ 2y 1)(y
20
+ 17y
19
+ ··· 6y + 1)
2
· (y
24
+ 20y
23
+ ··· 97y + 16)
c
8
y
3
(y
20
7y
19
+ ··· 6y + 1)
2
(y
24
7y
23
+ ··· 226304y + 16384)
c
9
(y
3
y
2
+ 2y 1)(y
20
11y
19
+ ··· 6y + 1)
2
· (y
24
12y
23
+ ··· 1380561y + 456976)
20