11a
295
(K11a
295
)
A knot diagram
1
Linearized knot diagam
6 9 1 8 2 10 11 3 5 7 4
Solving Sequence
1,3 4,8
5 9 2 6 11 7 10
c
3
c
4
c
8
c
2
c
5
c
11
c
7
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h1.78746 × 10
142
u
65
5.99607 × 10
142
u
64
+ ··· + 1.18505 × 10
143
b 1.11034 × 10
143
,
3.02457 × 10
142
u
65
1.75060 × 10
143
u
64
+ ··· + 1.54056 × 10
144
a 1.74902 × 10
145
,
u
66
3u
65
+ ··· + 110u + 13i
I
u
2
= h−u
11
u
10
4u
9
+ 2u
8
2u
7
+ 15u
6
+ 5u
5
+ 22u
4
+ 3u
3
+ 11u
2
+ b + 3,
u
11
u
10
4u
9
+ 3u
8
+ 21u
6
+ 11u
5
+ 34u
4
+ 10u
3
+ 21u
2
+ a + u + 6,
u
12
+ 2u
11
+ 7u
10
+ 7u
9
+ 16u
8
+ 8u
7
+ 18u
6
+ 2u
5
+ 12u
4
u
3
+ 5u
2
u + 1i
* 2 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.79 × 10
142
u
65
6.00 × 10
142
u
64
+ · · · + 1.19 × 10
143
b 1.11 ×
10
143
, 3.02 × 10
142
u
65
1.75 × 10
143
u
64
+ · · · + 1.54 × 10
144
a 1.75 ×
10
145
, u
66
3u
65
+ · · · + 110u + 13i
(i) Arc colorings
a
1
=
0
u
a
3
=
1
0
a
4
=
1
u
2
a
8
=
0.0196329u
65
+ 0.113634u
64
+ ··· + 62.9028u + 11.3531
0.150834u
65
+ 0.505977u
64
+ ··· 0.0314640u + 0.936954
a
5
=
0.224234u
65
1.09610u
64
+ ··· 36.1801u 11.7809
0.140984u
65
+ 0.152723u
64
+ ··· 27.9416u 3.17071
a
9
=
0.170467u
65
+ 0.619610u
64
+ ··· + 62.8714u + 12.2901
0.150834u
65
+ 0.505977u
64
+ ··· 0.0314640u + 0.936954
a
2
=
0.199233u
65
0.317764u
64
+ ··· + 22.5218u + 12.9750
0.0667194u
65
0.184659u
64
+ ··· 2.86894u 0.266940
a
6
=
0.0736024u
65
+ 0.158855u
64
+ ··· + 67.7003u 0.0987364
0.227329u
65
+ 0.752818u
64
+ ··· + 4.04994u + 1.37421
a
11
=
u
u
3
+ u
a
7
=
0.194772u
65
+ 0.662394u
64
+ ··· + 62.4963u + 11.6877
0.129513u
65
+ 0.444863u
64
+ ··· 0.728868u + 0.968066
a
10
=
0.403268u
65
1.30013u
64
+ ··· + 75.9641u + 9.20323
0.00829394u
65
0.0286337u
64
+ ··· 10.4471u 0.0802321
a
10
=
0.403268u
65
1.30013u
64
+ ··· + 75.9641u + 9.20323
0.00829394u
65
0.0286337u
64
+ ··· 10.4471u 0.0802321
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.295766u
65
+ 1.20445u
64
+ ··· + 70.0120u + 13.0476
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
66
2u
65
+ ··· 337u + 121
c
2
, c
8
u
66
+ u
65
+ ··· + 262u 97
c
3
, c
11
u
66
3u
65
+ ··· + 110u + 13
c
4
u
66
5u
65
+ ··· + 3840u 1447
c
6
, c
7
, c
10
u
66
5u
65
+ ··· 3u 1
c
9
u
66
+ 5u
64
+ ··· + 2311u 389
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
66
+ 42y
65
+ ··· + 122865y + 14641
c
2
, c
8
y
66
+ 49y
65
+ ··· + 143204y + 9409
c
3
, c
11
y
66
+ 47y
65
+ ··· 3000y + 169
c
4
y
66
19y
65
+ ··· 13709548y + 2093809
c
6
, c
7
, c
10
y
66
71y
65
+ ··· + 29y + 1
c
9
y
66
+ 10y
65
+ ··· + 4949885y + 151321
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.346412 + 0.925436I
a = 2.05986 + 0.31273I
b = 0.044674 1.054040I
3.85841 + 0.35943I 2.42133 + 0.I
u = 0.346412 0.925436I
a = 2.05986 0.31273I
b = 0.044674 + 1.054040I
3.85841 0.35943I 2.42133 + 0.I
u = 0.045813 + 1.027510I
a = 0.758381 + 1.185930I
b = 0.156972 + 1.390430I
0.60146 4.40690I 7.00000 + 3.71176I
u = 0.045813 1.027510I
a = 0.758381 1.185930I
b = 0.156972 1.390430I
0.60146 + 4.40690I 7.00000 3.71176I
u = 0.041627 + 1.032380I
a = 0.801128 + 1.092490I
b = 0.26921 1.73433I
4.74716 + 0.24143I 11.20357 + 0.I
u = 0.041627 1.032380I
a = 0.801128 1.092490I
b = 0.26921 + 1.73433I
4.74716 0.24143I 11.20357 + 0.I
u = 0.955497 + 0.038825I
a = 0.667759 0.483417I
b = 0.271741 1.131810I
3.45574 + 3.28085I 8.60109 3.29735I
u = 0.955497 0.038825I
a = 0.667759 + 0.483417I
b = 0.271741 + 1.131810I
3.45574 3.28085I 8.60109 + 3.29735I
u = 1.032800 + 0.239480I
a = 0.050681 0.394512I
b = 0.387740 1.305760I
6.38275 + 5.64915I 0
u = 1.032800 0.239480I
a = 0.050681 + 0.394512I
b = 0.387740 + 1.305760I
6.38275 5.64915I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.673097 + 0.824613I
a = 0.99902 + 1.36443I
b = 0.023131 + 1.237410I
1.08058 2.59004I 0
u = 0.673097 0.824613I
a = 0.99902 1.36443I
b = 0.023131 1.237410I
1.08058 + 2.59004I 0
u = 0.089061 + 1.093600I
a = 1.49100 + 0.23600I
b = 0.809871 0.432123I
3.37039 1.11848I 0
u = 0.089061 1.093600I
a = 1.49100 0.23600I
b = 0.809871 + 0.432123I
3.37039 + 1.11848I 0
u = 0.050328 + 0.893916I
a = 1.40705 2.33343I
b = 0.115704 + 1.020080I
0.16047 + 3.95702I 8.80042 3.39843I
u = 0.050328 0.893916I
a = 1.40705 + 2.33343I
b = 0.115704 1.020080I
0.16047 3.95702I 8.80042 + 3.39843I
u = 0.335391 + 1.071700I
a = 1.72267 0.57423I
b = 0.64639 + 1.48451I
3.39375 5.20124I 0
u = 0.335391 1.071700I
a = 1.72267 + 0.57423I
b = 0.64639 1.48451I
3.39375 + 5.20124I 0
u = 0.431490 + 1.050920I
a = 0.0006410 0.0716660I
b = 0.006605 + 0.382994I
0.63556 + 2.23216I 0
u = 0.431490 1.050920I
a = 0.0006410 + 0.0716660I
b = 0.006605 0.382994I
0.63556 2.23216I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.087080 + 0.373490I
a = 0.074311 0.348838I
b = 0.672686 0.122268I
2.99874 + 4.32150I 0
u = 1.087080 0.373490I
a = 0.074311 + 0.348838I
b = 0.672686 + 0.122268I
2.99874 4.32150I 0
u = 0.347155 + 0.753957I
a = 0.68430 1.36547I
b = 0.142627 1.332550I
4.54149 3.48085I 1.46862 + 11.56926I
u = 0.347155 0.753957I
a = 0.68430 + 1.36547I
b = 0.142627 + 1.332550I
4.54149 + 3.48085I 1.46862 11.56926I
u = 0.239265 + 1.179210I
a = 1.57985 + 0.23626I
b = 1.40483 + 0.19256I
1.69376 + 4.59816I 0
u = 0.239265 1.179210I
a = 1.57985 0.23626I
b = 1.40483 0.19256I
1.69376 4.59816I 0
u = 0.055605 + 1.217090I
a = 1.108100 + 0.672882I
b = 0.97672 1.47152I
4.71138 2.03235I 0
u = 0.055605 1.217090I
a = 1.108100 0.672882I
b = 0.97672 + 1.47152I
4.71138 + 2.03235I 0
u = 0.781623
a = 0.771378
b = 0.638431
6.81634 14.5150
u = 0.748237 + 0.016944I
a = 0.293962 + 0.332817I
b = 0.086918 + 1.120970I
2.54829 + 1.52445I 3.35567 4.49090I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.748237 0.016944I
a = 0.293962 0.332817I
b = 0.086918 1.120970I
2.54829 1.52445I 3.35567 + 4.49090I
u = 0.243695 + 1.234620I
a = 0.863749 0.292464I
b = 0.489851 + 0.829291I
1.02770 + 2.29601I 0
u = 0.243695 1.234620I
a = 0.863749 + 0.292464I
b = 0.489851 0.829291I
1.02770 2.29601I 0
u = 0.728717 + 1.033480I
a = 0.996190 + 0.473778I
b = 0.083413 + 1.085400I
1.28963 3.11000I 0
u = 0.728717 1.033480I
a = 0.996190 0.473778I
b = 0.083413 1.085400I
1.28963 + 3.11000I 0
u = 0.390931 + 1.215750I
a = 1.53205 + 0.42878I
b = 0.420123 1.112900I
1.13230 + 5.61385I 0
u = 0.390931 1.215750I
a = 1.53205 0.42878I
b = 0.420123 + 1.112900I
1.13230 5.61385I 0
u = 0.353791 + 1.249110I
a = 0.952423 0.041954I
b = 0.580495 + 0.820287I
1.05491 + 2.33150I 0
u = 0.353791 1.249110I
a = 0.952423 + 0.041954I
b = 0.580495 0.820287I
1.05491 2.33150I 0
u = 0.501327 + 0.452690I
a = 0.598700 0.082777I
b = 0.32459 + 1.44481I
5.36608 + 1.78436I 3.12908 + 1.84447I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.501327 0.452690I
a = 0.598700 + 0.082777I
b = 0.32459 1.44481I
5.36608 1.78436I 3.12908 1.84447I
u = 0.365423 + 1.275750I
a = 1.277800 0.378899I
b = 0.805170 + 0.171054I
10.80040 4.11654I 0
u = 0.365423 1.275750I
a = 1.277800 + 0.378899I
b = 0.805170 0.171054I
10.80040 + 4.11654I 0
u = 0.541093 + 1.238690I
a = 1.53767 + 0.14911I
b = 0.57803 1.42790I
3.18615 11.21570I 0
u = 0.541093 1.238690I
a = 1.53767 0.14911I
b = 0.57803 + 1.42790I
3.18615 + 11.21570I 0
u = 0.597212 + 0.109134I
a = 0.487440 + 0.615944I
b = 0.646631 0.152437I
2.00698 + 1.67505I 2.85750 4.67727I
u = 0.597212 0.109134I
a = 0.487440 0.615944I
b = 0.646631 + 0.152437I
2.00698 1.67505I 2.85750 + 4.67727I
u = 1.40981 + 0.11612I
a = 0.163095 + 0.411198I
b = 0.430569 + 1.221430I
0.32445 + 8.55031I 0
u = 1.40981 0.11612I
a = 0.163095 0.411198I
b = 0.430569 1.221430I
0.32445 8.55031I 0
u = 0.51734 + 1.31863I
a = 1.62787 0.07441I
b = 0.418270 + 1.216760I
7.53925 + 8.57953I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.51734 1.31863I
a = 1.62787 + 0.07441I
b = 0.418270 1.216760I
7.53925 8.57953I 0
u = 0.39858 + 1.41998I
a = 1.206100 0.227250I
b = 1.212910 0.088188I
8.62445 + 9.32694I 0
u = 0.39858 1.41998I
a = 1.206100 + 0.227250I
b = 1.212910 + 0.088188I
8.62445 9.32694I 0
u = 0.16422 + 1.53291I
a = 0.599718 0.042213I
b = 0.669641 0.580855I
6.78842 + 2.02734I 0
u = 0.16422 1.53291I
a = 0.599718 + 0.042213I
b = 0.669641 + 0.580855I
6.78842 2.02734I 0
u = 0.63083 + 1.41800I
a = 1.348130 0.018048I
b = 0.55812 + 1.41815I
3.9251 15.5092I 0
u = 0.63083 1.41800I
a = 1.348130 + 0.018048I
b = 0.55812 1.41815I
3.9251 + 15.5092I 0
u = 0.50208 + 1.52607I
a = 0.240163 + 0.136220I
b = 0.200360 0.695523I
7.42737 + 2.83943I 0
u = 0.50208 1.52607I
a = 0.240163 0.136220I
b = 0.200360 + 0.695523I
7.42737 2.83943I 0
u = 0.74136 + 1.51980I
a = 0.786039 0.184606I
b = 0.662180 0.862296I
6.10476 + 3.03885I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.74136 1.51980I
a = 0.786039 + 0.184606I
b = 0.662180 + 0.862296I
6.10476 3.03885I 0
u = 1.01838 + 1.36708I
a = 0.624946 0.274570I
b = 0.141222 1.012850I
6.59255 4.44136I 0
u = 1.01838 1.36708I
a = 0.624946 + 0.274570I
b = 0.141222 + 1.012850I
6.59255 + 4.44136I 0
u = 0.185031
a = 1.77117
b = 0.368557
0.660290 15.1130
u = 0.0705906 + 0.0713114I
a = 6.94504 + 10.19820I
b = 0.538056 0.549223I
1.13118 + 1.76995I 5.98304 + 2.62479I
u = 0.0705906 0.0713114I
a = 6.94504 10.19820I
b = 0.538056 + 0.549223I
1.13118 1.76995I 5.98304 2.62479I
11
II.
I
u
2
= h−u
11
u
10
+· · ·+b + 3, u
11
u
10
+· · ·+a + 6, u
12
+2u
11
+· · ·u + 1i
(i) Arc colorings
a
1
=
0
u
a
3
=
1
0
a
4
=
1
u
2
a
8
=
u
11
+ u
10
+ 4u
9
3u
8
21u
6
11u
5
34u
4
10u
3
21u
2
u 6
u
11
+ u
10
+ 4u
9
2u
8
+ 2u
7
15u
6
5u
5
22u
4
3u
3
11u
2
3
a
5
=
7u
11
17u
10
+ ··· 18u + 3
u
11
2u
10
+ ··· 4u + 2
a
9
=
2u
11
+ 2u
10
+ ··· u 9
u
11
+ u
10
+ 4u
9
2u
8
+ 2u
7
15u
6
5u
5
22u
4
3u
3
11u
2
3
a
2
=
4u
11
+ 7u
10
+ ··· + 9u 8
u
10
2u
9
6u
8
5u
7
10u
6
3u
5
8u
4
+ u
3
4u
2
2
a
6
=
u
11
+ 3u
10
+ ··· + 4u + 4
u
11
+ 2u
10
+ 6u
9
+ 5u
8
+ 10u
7
+ 3u
6
+ 8u
5
u
4
+ 4u
3
+ u
2
+ 2u
a
11
=
u
u
3
+ u
a
7
=
u
11
+ u
10
+ 4u
9
3u
8
21u
6
11u
5
33u
4
9u
3
19u
2
u 5
u
11
+ u
10
+ 4u
9
2u
8
+ 2u
7
14u
6
4u
5
19u
4
2u
3
8u
2
2
a
10
=
u
11
u
9
+ ··· + 5u + 6
u
11
+ 3u
10
+ ··· + 3u + 2
a
10
=
u
11
u
9
+ ··· + 5u + 6
u
11
+ 3u
10
+ ··· + 3u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
11
+ 11u
10
+ 35u
9
+ 50u
8
+ 91u
7
+ 84u
6
+ 111u
5
+ 63u
4
+ 65u
3
+ 24u
2
+ 15u + 13
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
u
11
+ ··· + 2u + 1
c
2
u
12
+ 6u
10
+ ··· 3u + 1
c
3
u
12
+ 2u
11
+ ··· u + 1
c
4
u
12
+ 2u
10
3u
9
+ 7u
8
6u
6
+ 8u
5
+ 7u
4
2u
3
+ u
2
+ 3u + 1
c
5
u
12
+ u
11
+ ··· 2u + 1
c
6
, c
7
u
12
8u
10
+ 24u
8
32u
6
u
5
+ 18u
4
+ u
3
3u
2
+ 1
c
8
u
12
+ 6u
10
+ ··· + 3u + 1
c
9
u
12
+ u
11
u
10
+ 7u
8
8u
7
+ 7u
6
5u
5
+ 10u
4
10u
3
+ 7u
2
2u + 1
c
10
u
12
8u
10
+ 24u
8
32u
6
+ u
5
+ 18u
4
u
3
3u
2
+ 1
c
11
u
12
2u
11
+ ··· + u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
12
+ 9y
11
+ ··· + 10y + 1
c
2
, c
8
y
12
+ 12y
11
+ ··· + 5y + 1
c
3
, c
11
y
12
+ 10y
11
+ ··· + 9y + 1
c
4
y
12
+ 4y
11
+ ··· 7y + 1
c
6
, c
7
, c
10
y
12
16y
11
+ ··· 6y + 1
c
9
y
12
3y
11
+ ··· + 10y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.369646 + 0.777513I
a = 0.17021 + 1.45709I
b = 0.436264 0.375928I
1.64985 + 2.57365I 12.02620 3.39540I
u = 0.369646 0.777513I
a = 0.17021 1.45709I
b = 0.436264 + 0.375928I
1.64985 2.57365I 12.02620 + 3.39540I
u = 0.149040 + 1.211350I
a = 0.533757 + 0.789884I
b = 0.57539 1.56859I
5.02229 1.34240I 13.23433 + 1.17063I
u = 0.149040 1.211350I
a = 0.533757 0.789884I
b = 0.57539 + 1.56859I
5.02229 + 1.34240I 13.23433 1.17063I
u = 0.286338 + 0.674056I
a = 1.23982 + 0.95839I
b = 0.211327 + 1.361950I
4.35770 2.95981I 6.70212 1.32008I
u = 0.286338 0.674056I
a = 1.23982 0.95839I
b = 0.211327 1.361950I
4.35770 + 2.95981I 6.70212 + 1.32008I
u = 0.512766 + 1.211820I
a = 0.805948 + 0.152900I
b = 0.476182 + 0.586558I
0.99987 + 2.95882I 8.95384 10.28538I
u = 0.512766 1.211820I
a = 0.805948 0.152900I
b = 0.476182 0.586558I
0.99987 2.95882I 8.95384 + 10.28538I
u = 0.321964 + 0.480875I
a = 0.07177 3.69908I
b = 0.151135 1.234650I
1.09062 4.53454I 3.08537 + 5.69650I
u = 0.321964 0.480875I
a = 0.07177 + 3.69908I
b = 0.151135 + 1.234650I
1.09062 + 4.53454I 3.08537 5.69650I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.87493 + 1.46525I
a = 0.630802 0.177646I
b = 0.276860 0.753139I
7.64591 + 4.32752I 14.4982 5.1187I
u = 0.87493 1.46525I
a = 0.630802 + 0.177646I
b = 0.276860 + 0.753139I
7.64591 4.32752I 14.4982 + 5.1187I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
12
u
11
+ ··· + 2u + 1)(u
66
2u
65
+ ··· 337u + 121)
c
2
(u
12
+ 6u
10
+ ··· 3u + 1)(u
66
+ u
65
+ ··· + 262u 97)
c
3
(u
12
+ 2u
11
+ ··· u + 1)(u
66
3u
65
+ ··· + 110u + 13)
c
4
(u
12
+ 2u
10
3u
9
+ 7u
8
6u
6
+ 8u
5
+ 7u
4
2u
3
+ u
2
+ 3u + 1)
· (u
66
5u
65
+ ··· + 3840u 1447)
c
5
(u
12
+ u
11
+ ··· 2u + 1)(u
66
2u
65
+ ··· 337u + 121)
c
6
, c
7
(u
12
8u
10
+ 24u
8
32u
6
u
5
+ 18u
4
+ u
3
3u
2
+ 1)
· (u
66
5u
65
+ ··· 3u 1)
c
8
(u
12
+ 6u
10
+ ··· + 3u + 1)(u
66
+ u
65
+ ··· + 262u 97)
c
9
(u
12
+ u
11
u
10
+ 7u
8
8u
7
+ 7u
6
5u
5
+ 10u
4
10u
3
+ 7u
2
2u + 1)
· (u
66
+ 5u
64
+ ··· + 2311u 389)
c
10
(u
12
8u
10
+ 24u
8
32u
6
+ u
5
+ 18u
4
u
3
3u
2
+ 1)
· (u
66
5u
65
+ ··· 3u 1)
c
11
(u
12
2u
11
+ ··· + u + 1)(u
66
3u
65
+ ··· + 110u + 13)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
12
+ 9y
11
+ ··· + 10y + 1)(y
66
+ 42y
65
+ ··· + 122865y + 14641)
c
2
, c
8
(y
12
+ 12y
11
+ ··· + 5y + 1)(y
66
+ 49y
65
+ ··· + 143204y + 9409)
c
3
, c
11
(y
12
+ 10y
11
+ ··· + 9y + 1)(y
66
+ 47y
65
+ ··· 3000y + 169)
c
4
(y
12
+ 4y
11
+ ··· 7y + 1)
· (y
66
19y
65
+ ··· 13709548y + 2093809)
c
6
, c
7
, c
10
(y
12
16y
11
+ ··· 6y + 1)(y
66
71y
65
+ ··· + 29y + 1)
c
9
(y
12
3y
11
+ ··· + 10y + 1)(y
66
+ 10y
65
+ ··· + 4949885y + 151321)
18