11a
296
(K11a
296
)
A knot diagram
1
Linearized knot diagam
6 9 1 8 2 11 10 3 5 7 4
Solving Sequence
6,11 4,7
1 2 3 5 10 8 9
c
6
c
11
c
1
c
3
c
5
c
10
c
7
c
9
c
2
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−9.00774 × 10
87
u
70
2.18808 × 10
87
u
69
+ ··· + 5.70348 × 10
89
b 5.05378 × 10
89
,
5.09051 × 10
89
u
70
+ 1.23106 × 10
90
u
69
+ ··· + 5.70348 × 10
89
a 1.93831 × 10
90
, u
71
3u
70
+ ··· 6u + 1i
I
u
2
= hu
14
+ 2u
13
+ ··· + b + 2,
u
15
7u
13
+ 2u
12
17u
11
+ 15u
10
14u
9
+ 41u
8
+ 5u
7
+ 50u
6
+ 11u
5
+ 25u
4
+ u
3
+ 4u
2
+ a 2u + 1,
u
16
+ 2u
15
+ ··· + 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 87 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−9.01×10
87
u
70
2.19×10
87
u
69
+· · ·+5.70×10
89
b5.05×10
89
, 5.09×
10
89
u
70
+1.23×10
90
u
69
+· · ·+5.70×10
89
a1.94×10
90
, u
71
3u
70
+· · ·6u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
0.892526u
70
2.15844u
69
+ ··· 10.7951u + 3.39847
0.0157934u
70
+ 0.00383640u
69
+ ··· 7.17845u + 0.886087
a
7
=
1
u
2
a
1
=
2.67227u
70
+ 7.45363u
69
+ ··· 50.3252u + 5.65629
0.673792u
70
2.84206u
69
+ ··· + 8.69069u 1.27093
a
2
=
1.99848u
70
+ 4.61158u
69
+ ··· 41.6345u + 4.38536
0.673792u
70
2.84206u
69
+ ··· + 8.69069u 1.27093
a
3
=
0.937724u
70
2.44311u
69
+ ··· + 25.2488u 4.87921
0.334153u
70
+ 1.04108u
69
+ ··· 5.67570u + 1.49367
a
5
=
1.09394u
70
2.86528u
69
+ ··· 13.4038u + 3.36574
0.147468u
70
0.313880u
69
+ ··· 6.79147u + 0.840422
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
1.33394u
70
+ 4.17244u
69
+ ··· 28.8076u + 3.70746
0.113697u
70
+ 0.700148u
69
+ ··· + 8.94630u 0.936023
a
9
=
1.33394u
70
+ 4.17244u
69
+ ··· 28.8076u + 3.70746
0.113697u
70
+ 0.700148u
69
+ ··· + 8.94630u 0.936023
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.389233u
70
+ 2.15935u
69
+ ··· 15.8626u + 7.58410
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
71
u
70
+ ··· 1361u 281
c
2
, c
8
u
71
+ u
70
+ ··· + 117u 76
c
3
, c
11
u
71
4u
70
+ ··· 6u 13
c
4
u
71
5u
70
+ ··· 8378u 1711
c
6
, c
7
, c
10
u
71
+ 3u
70
+ ··· 6u 1
c
9
u
71
+ 18u
69
+ ··· 57052u 26357
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
71
+ 59y
70
+ ··· 1212265y 78961
c
2
, c
8
y
71
+ 49y
70
+ ··· 79487y 5776
c
3
, c
11
y
71
+ 36y
70
+ ··· + 3572y 169
c
4
y
71
+ 19y
70
+ ··· 36750038y 2927521
c
6
, c
7
, c
10
y
71
+ 73y
70
+ ··· 40y 1
c
9
y
71
+ 36y
70
+ ··· 14918431652y 694691449
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.876704 + 0.516917I
a = 0.018044 + 1.313340I
b = 0.76980 1.61963I
4.30422 + 11.39740I 0
u = 0.876704 0.516917I
a = 0.018044 1.313340I
b = 0.76980 + 1.61963I
4.30422 11.39740I 0
u = 0.383449 + 0.883215I
a = 1.004320 0.563786I
b = 0.979718 + 0.596029I
1.53313 2.60659I 0
u = 0.383449 0.883215I
a = 1.004320 + 0.563786I
b = 0.979718 0.596029I
1.53313 + 2.60659I 0
u = 0.952818 + 0.469187I
a = 0.006177 1.082100I
b = 0.81454 + 1.61178I
0.03727 4.92803I 0
u = 0.952818 0.469187I
a = 0.006177 + 1.082100I
b = 0.81454 1.61178I
0.03727 + 4.92803I 0
u = 0.276228 + 0.874801I
a = 1.209770 + 0.164013I
b = 0.335540 + 0.242745I
3.52903 0.05215I 0
u = 0.276228 0.874801I
a = 1.209770 0.164013I
b = 0.335540 0.242745I
3.52903 + 0.05215I 0
u = 0.850893 + 0.705002I
a = 0.934029 0.345819I
b = 0.051753 + 1.245970I
4.79765 5.63917I 0
u = 0.850893 0.705002I
a = 0.934029 + 0.345819I
b = 0.051753 1.245970I
4.79765 + 5.63917I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.805118 + 0.297549I
a = 0.302889 + 0.998924I
b = 0.85415 1.55688I
5.56347 1.22600I 0
u = 0.805118 0.297549I
a = 0.302889 0.998924I
b = 0.85415 + 1.55688I
5.56347 + 1.22600I 0
u = 0.166244 + 1.177330I
a = 1.040880 + 0.200780I
b = 0.133932 0.567605I
2.99865 + 0.00829I 0
u = 0.166244 1.177330I
a = 1.040880 0.200780I
b = 0.133932 + 0.567605I
2.99865 0.00829I 0
u = 0.555602 + 0.566754I
a = 1.208260 + 0.562334I
b = 0.064611 + 0.675670I
6.67179 + 5.48975I 1.10039 5.62534I
u = 0.555602 0.566754I
a = 1.208260 0.562334I
b = 0.064611 0.675670I
6.67179 5.48975I 1.10039 + 5.62534I
u = 0.708755 + 0.346572I
a = 0.357040 + 1.214250I
b = 0.113056 1.348490I
3.03135 1.49469I 12.21917 + 1.87835I
u = 0.708755 0.346572I
a = 0.357040 1.214250I
b = 0.113056 + 1.348490I
3.03135 + 1.49469I 12.21917 1.87835I
u = 0.742406 + 0.959669I
a = 0.626210 + 0.097246I
b = 0.305996 1.152800I
1.34036 1.05400I 0
u = 0.742406 0.959669I
a = 0.626210 0.097246I
b = 0.305996 + 1.152800I
1.34036 + 1.05400I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.190903 + 0.733880I
a = 0.025776 0.589218I
b = 0.365991 0.359203I
1.89003 1.47574I 1.69844 + 5.10987I
u = 0.190903 0.733880I
a = 0.025776 + 0.589218I
b = 0.365991 + 0.359203I
1.89003 + 1.47574I 1.69844 5.10987I
u = 0.569734 + 0.484141I
a = 0.61345 1.53356I
b = 0.04604 + 1.49792I
0.82584 + 5.58849I 6.71893 8.23388I
u = 0.569734 0.484141I
a = 0.61345 + 1.53356I
b = 0.04604 1.49792I
0.82584 5.58849I 6.71893 + 8.23388I
u = 0.653667 + 0.146302I
a = 0.87774 + 1.79876I
b = 0.379281 1.055800I
1.15932 3.38797I 5.90325 + 4.76662I
u = 0.653667 0.146302I
a = 0.87774 1.79876I
b = 0.379281 + 1.055800I
1.15932 + 3.38797I 5.90325 4.76662I
u = 0.000769 + 1.346270I
a = 0.592643 + 0.337447I
b = 0.339498 1.090940I
3.15202 1.08459I 0
u = 0.000769 1.346270I
a = 0.592643 0.337447I
b = 0.339498 + 1.090940I
3.15202 + 1.08459I 0
u = 0.212829 + 1.337500I
a = 0.545515 + 0.939906I
b = 0.73928 1.47728I
5.79082 6.48362I 0
u = 0.212829 1.337500I
a = 0.545515 0.939906I
b = 0.73928 + 1.47728I
5.79082 + 6.48362I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.096488 + 1.359540I
a = 0.246854 0.294342I
b = 0.34390 + 1.89289I
8.06307 + 3.83737I 0
u = 0.096488 1.359540I
a = 0.246854 + 0.294342I
b = 0.34390 1.89289I
8.06307 3.83737I 0
u = 0.177258 + 1.357570I
a = 0.009719 0.403632I
b = 0.83501 + 1.55183I
8.10631 + 3.87908I 0
u = 0.177258 1.357570I
a = 0.009719 + 0.403632I
b = 0.83501 1.55183I
8.10631 3.87908I 0
u = 0.123250 + 1.376920I
a = 0.810111 0.684516I
b = 0.97380 + 1.34302I
4.05458 + 4.15368I 0
u = 0.123250 1.376920I
a = 0.810111 + 0.684516I
b = 0.97380 1.34302I
4.05458 4.15368I 0
u = 0.018897 + 1.385550I
a = 1.241690 0.236182I
b = 1.362110 + 0.377613I
3.28165 + 2.64244I 0
u = 0.018897 1.385550I
a = 1.241690 + 0.236182I
b = 1.362110 0.377613I
3.28165 2.64244I 0
u = 0.481402 + 0.355980I
a = 0.994444 0.755690I
b = 0.273431 + 0.381017I
2.67458 + 1.55489I 2.82989 4.24710I
u = 0.481402 0.355980I
a = 0.994444 + 0.755690I
b = 0.273431 0.381017I
2.67458 1.55489I 2.82989 + 4.24710I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.06503 + 1.42398I
a = 0.662560 0.647023I
b = 0.148769 + 0.759204I
4.60407 3.10250I 0
u = 0.06503 1.42398I
a = 0.662560 + 0.647023I
b = 0.148769 0.759204I
4.60407 + 3.10250I 0
u = 0.05232 + 1.45453I
a = 0.735490 + 0.335267I
b = 2.09725 1.71117I
10.25020 4.13818I 0
u = 0.05232 1.45453I
a = 0.735490 0.335267I
b = 2.09725 + 1.71117I
10.25020 + 4.13818I 0
u = 0.25007 + 1.45878I
a = 0.547129 + 0.418576I
b = 0.61317 1.54749I
2.82172 4.95017I 0
u = 0.25007 1.45878I
a = 0.547129 0.418576I
b = 0.61317 + 1.54749I
2.82172 + 4.95017I 0
u = 0.34183 + 1.48836I
a = 0.599521 + 0.532622I
b = 1.82790 1.33312I
11.32690 + 3.07672I 0
u = 0.34183 1.48836I
a = 0.599521 0.532622I
b = 1.82790 + 1.33312I
11.32690 3.07672I 0
u = 0.19479 + 1.51543I
a = 0.459769 + 0.827837I
b = 0.114814 0.131344I
13.4581 + 8.2834I 0
u = 0.19479 1.51543I
a = 0.459769 0.827837I
b = 0.114814 + 0.131344I
13.4581 8.2834I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.19607 + 1.51746I
a = 0.670319 0.456053I
b = 0.52830 + 1.86550I
5.78366 + 8.41270I 0
u = 0.19607 1.51746I
a = 0.670319 + 0.456053I
b = 0.52830 1.86550I
5.78366 8.41270I 0
u = 0.14626 + 1.54836I
a = 0.223801 0.693017I
b = 0.069496 + 0.154353I
9.50943 3.27093I 0
u = 0.14626 1.54836I
a = 0.223801 + 0.693017I
b = 0.069496 0.154353I
9.50943 + 3.27093I 0
u = 0.420094 + 0.080132I
a = 0.54577 2.67604I
b = 0.403742 + 1.076110I
0.66143 + 2.25848I 4.43494 + 0.57709I
u = 0.420094 0.080132I
a = 0.54577 + 2.67604I
b = 0.403742 1.076110I
0.66143 2.25848I 4.43494 0.57709I
u = 0.31389 + 1.54199I
a = 0.690616 + 0.664349I
b = 1.38403 1.60738I
10.9839 + 15.7452I 0
u = 0.31389 1.54199I
a = 0.690616 0.664349I
b = 1.38403 + 1.60738I
10.9839 15.7452I 0
u = 0.32953 + 1.53939I
a = 0.683207 0.587683I
b = 1.50202 + 1.41422I
6.50526 9.54418I 0
u = 0.32953 1.53939I
a = 0.683207 + 0.587683I
b = 1.50202 1.41422I
6.50526 + 9.54418I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.350278 + 0.238783I
a = 2.06396 + 2.08046I
b = 0.108087 0.747622I
0.99996 2.28586I 9.25040 + 1.43697I
u = 0.350278 0.238783I
a = 2.06396 2.08046I
b = 0.108087 + 0.747622I
0.99996 + 2.28586I 9.25040 1.43697I
u = 0.380862
a = 0.547449
b = 0.250181
0.684340 14.6690
u = 0.00681 + 1.62560I
a = 0.370034 + 0.196828I
b = 0.791967 0.211199I
12.04640 0.66622I 0
u = 0.00681 1.62560I
a = 0.370034 0.196828I
b = 0.791967 + 0.211199I
12.04640 + 0.66622I 0
u = 0.18915 + 1.65621I
a = 0.370196 + 0.320048I
b = 0.241587 + 0.177123I
12.95250 1.69138I 0
u = 0.18915 1.65621I
a = 0.370196 0.320048I
b = 0.241587 0.177123I
12.95250 + 1.69138I 0
u = 0.033849 + 0.258899I
a = 4.95781 0.70188I
b = 0.156325 0.185251I
1.05941 2.33356I 9.20153 2.18443I
u = 0.033849 0.258899I
a = 4.95781 + 0.70188I
b = 0.156325 + 0.185251I
1.05941 + 2.33356I 9.20153 + 2.18443I
u = 0.100795 + 0.225172I
a = 2.19587 + 2.54396I
b = 1.25338 1.68214I
4.54187 3.47725I 1.03919 + 11.73810I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.100795 0.225172I
a = 2.19587 2.54396I
b = 1.25338 + 1.68214I
4.54187 + 3.47725I 1.03919 11.73810I
12
II.
I
u
2
= hu
14
+2u
13
+· · ·+b+2, u
15
7u
13
+· · ·+a+1, u
16
+2u
15
+· · ·+2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
u
15
+ 7u
13
+ ··· + 2u 1
u
14
2u
13
+ ··· 4u 2
a
7
=
1
u
2
a
1
=
u
14
3u
13
+ ··· 3u 4
u
15
2u
14
+ ··· + 2u
2
u
a
2
=
u
15
3u
14
+ ··· 4u 4
u
15
2u
14
+ ··· + 2u
2
u
a
3
=
u
15
u
14
+ ··· u 2
u
14
2u
13
+ ··· 4u 1
a
5
=
u
15
+ 7u
13
+ ··· 6u
2
1
u
5
u
4
3u
3
2u
2
2u 1
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
2u
15
4u
14
+ ··· u 1
u
13
2u
12
+ ··· 9u
3
2u
2
a
9
=
2u
15
4u
14
+ ··· u 1
u
13
2u
12
+ ··· 9u
3
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
15
+ 11u
14
+ 75u
13
+ 88u
12
+ 284u
11
+ 269u
10
+ 546u
9
+
386u
8
+ 544u
7
+ 244u
6
+ 249u
5
+ 41u
4
+ 44u
3
2u
2
+ 14u + 7
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 8u
14
+ ··· + 3u + 1
c
2
u
16
+ 5u
14
+ ··· + 4u
2
+ 1
c
3
u
16
+ 3u
15
+ ··· + 8u
2
+ 1
c
4
u
16
+ u
13
+ ··· 7u
2
+ 1
c
5
u
16
+ 8u
14
+ ··· 3u + 1
c
6
, c
7
u
16
+ 2u
15
+ ··· + 2u + 1
c
8
u
16
+ 5u
14
+ ··· + 4u
2
+ 1
c
9
u
16
+ u
15
+ ··· + 6u
2
+ 1
c
10
u
16
2u
15
+ ··· 2u + 1
c
11
u
16
3u
15
+ ··· + 8u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
16
+ 16y
15
+ ··· + 13y + 1
c
2
, c
8
y
16
+ 10y
15
+ ··· + 8y + 1
c
3
, c
11
y
16
+ 13y
15
+ ··· + 16y + 1
c
4
y
16
2y
14
+ ··· 14y + 1
c
6
, c
7
, c
10
y
16
+ 18y
15
+ ··· + 4y + 1
c
9
y
16
+ 5y
15
+ ··· + 12y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.569342 + 1.028560I
a = 0.720411 0.176385I
b = 0.175330 + 0.986553I
0.549860 0.999226I 9.35133 + 0.51407I
u = 0.569342 1.028560I
a = 0.720411 + 0.176385I
b = 0.175330 0.986553I
0.549860 + 0.999226I 9.35133 0.51407I
u = 0.324061 + 0.738568I
a = 1.22712 + 0.86928I
b = 1.167210 0.652672I
0.66827 2.96805I 2.18241 + 5.99537I
u = 0.324061 0.738568I
a = 1.22712 0.86928I
b = 1.167210 + 0.652672I
0.66827 + 2.96805I 2.18241 5.99537I
u = 0.051468 + 1.266120I
a = 1.278820 + 0.261068I
b = 0.427098 + 0.016868I
2.01678 + 1.79591I 6.94894 2.52988I
u = 0.051468 1.266120I
a = 1.278820 0.261068I
b = 0.427098 0.016868I
2.01678 1.79591I 6.94894 + 2.52988I
u = 0.168287 + 1.312890I
a = 0.500784 0.449767I
b = 1.55170 + 2.17075I
7.83940 + 4.87519I 1.58436 7.54746I
u = 0.168287 1.312890I
a = 0.500784 + 0.449767I
b = 1.55170 2.17075I
7.83940 4.87519I 1.58436 + 7.54746I
u = 0.18168 + 1.42029I
a = 0.619856 + 0.736296I
b = 0.71287 1.31954I
4.56313 5.40512I 2.67129 + 5.45372I
u = 0.18168 1.42029I
a = 0.619856 0.736296I
b = 0.71287 + 1.31954I
4.56313 + 5.40512I 2.67129 5.45372I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.458536 + 0.295995I
a = 0.30047 + 2.31517I
b = 0.443631 0.902773I
0.92810 3.00419I 8.30090 + 9.42735I
u = 0.458536 0.295995I
a = 0.30047 2.31517I
b = 0.443631 + 0.902773I
0.92810 + 3.00419I 8.30090 9.42735I
u = 0.349990 + 0.344981I
a = 1.33662 + 0.55629I
b = 0.74370 1.67764I
4.41668 2.95405I 4.95739 2.07123I
u = 0.349990 0.344981I
a = 1.33662 0.55629I
b = 0.74370 + 1.67764I
4.41668 + 2.95405I 4.95739 + 2.07123I
u = 0.06681 + 1.63596I
a = 0.312384 0.028797I
b = 0.483326 0.701860I
11.81930 1.32705I 4.00338 + 5.75939I
u = 0.06681 1.63596I
a = 0.312384 + 0.028797I
b = 0.483326 + 0.701860I
11.81930 + 1.32705I 4.00338 5.75939I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
16
+ 8u
14
+ ··· + 3u + 1)(u
71
u
70
+ ··· 1361u 281)
c
2
(u
16
+ 5u
14
+ ··· + 4u
2
+ 1)(u
71
+ u
70
+ ··· + 117u 76)
c
3
(u
16
+ 3u
15
+ ··· + 8u
2
+ 1)(u
71
4u
70
+ ··· 6u 13)
c
4
(u
16
+ u
13
+ ··· 7u
2
+ 1)(u
71
5u
70
+ ··· 8378u 1711)
c
5
(u
16
+ 8u
14
+ ··· 3u + 1)(u
71
u
70
+ ··· 1361u 281)
c
6
, c
7
(u
16
+ 2u
15
+ ··· + 2u + 1)(u
71
+ 3u
70
+ ··· 6u 1)
c
8
(u
16
+ 5u
14
+ ··· + 4u
2
+ 1)(u
71
+ u
70
+ ··· + 117u 76)
c
9
(u
16
+ u
15
+ ··· + 6u
2
+ 1)(u
71
+ 18u
69
+ ··· 57052u 26357)
c
10
(u
16
2u
15
+ ··· 2u + 1)(u
71
+ 3u
70
+ ··· 6u 1)
c
11
(u
16
3u
15
+ ··· + 8u
2
+ 1)(u
71
4u
70
+ ··· 6u 13)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
16
+ 16y
15
+ ··· + 13y + 1)(y
71
+ 59y
70
+ ··· 1212265y 78961)
c
2
, c
8
(y
16
+ 10y
15
+ ··· + 8y + 1)(y
71
+ 49y
70
+ ··· 79487y 5776)
c
3
, c
11
(y
16
+ 13y
15
+ ··· + 16y + 1)(y
71
+ 36y
70
+ ··· + 3572y 169)
c
4
(y
16
2y
14
+ ··· 14y + 1)
· (y
71
+ 19y
70
+ ··· 36750038y 2927521)
c
6
, c
7
, c
10
(y
16
+ 18y
15
+ ··· + 4y + 1)(y
71
+ 73y
70
+ ··· 40y 1)
c
9
(y
16
+ 5y
15
+ ··· + 12y + 1)
· (y
71
+ 36y
70
+ ··· 14918431652y 694691449)
19