11a
297
(K11a
297
)
A knot diagram
1
Linearized knot diagam
7 10 1 8 2 9 11 3 6 5 4
Solving Sequence
6,9
7
2,10
3 1 5 11 8 4
c
6
c
9
c
2
c
1
c
5
c
10
c
8
c
4
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
14
5u
13
+ ··· + 2b 4,
u
13
+ 5u
12
+ 17u
11
+ 38u
10
+ 66u
9
+ 91u
8
+ 106u
7
+ 108u
6
+ 96u
5
+ 76u
4
+ 53u
3
+ 33u
2
+ 2a + 14u + 1,
u
15
+ 5u
14
+ ··· + 18u + 4i
I
u
2
= h458u
21
+ 5062u
20
+ ··· + 989b + 22293, 16339u
21
+ 151170u
20
+ ··· + 12857a + 26538,
u
22
+ 10u
21
+ ··· + 121u + 13i
I
u
3
= h−1564u
11
a
3
1275u
11
a
2
+ ··· + 2263a + 139, 3u
11
a
3
3u
11
a
2
+ ··· 17a + 30,
u
12
3u
11
+ 8u
10
13u
9
+ 18u
8
21u
7
+ 19u
6
17u
5
+ 10u
4
6u
3
+ 4u
2
+ 1i
I
u
4
= h−44u
15
+ 195u
14
+ ··· + 31b 7, 139u
15
752u
14
+ ··· + 93a 538, u
16
5u
15
+ ··· 13u + 3i
I
u
5
= h17a
3
u
2
4a
3
u 24a
2
u
2
+ 28a
3
+ 13a
2
u + 27u
2
a 41a
2
24au 19u
2
+ 25b + 68a + 3u 46,
2a
3
u
2
+ a
4
+ a
3
u + 3a
2
u
2
2a
3
a
2
u 2u
2
a + 3a
2
+ 3au 2u
2
5a + 3u + 1, u
3
u
2
+ 2u 1i
I
u
6
= hb u + 1, a u, u
2
u + 1i
I
u
7
= hb + u 2, a + 2, u
2
u + 1i
I
u
8
= hb + u 1, a + 1, u
2
u + 1i
I
u
9
= hb, a 1, u
2
u + 1i
I
u
10
= hb + u, a u, u
2
u + 1i
* 10 irreducible components of dim
C
= 0, with total 123 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I.
I
u
1
= h−u
14
5u
13
+· · ·+2b4, u
13
+5u
12
+· · ·+2a+1, u
15
+5u
14
+· · ·+18u+4i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u
2
a
2
=
1
2
u
13
5
2
u
12
+ ··· 7u
1
2
1
2
u
14
+
5
2
u
13
+ ··· +
15
2
u + 2
a
10
=
u
u
a
3
=
1
2
u
13
5
2
u
12
+ ···
9
2
u
2
+
3
2
1
2
u
14
+
5
2
u
13
+ ··· + 7u
2
+
1
2
u
a
1
=
1
2
u
14
3u
13
+ ···
11
2
u
1
2
3
2
u
14
+
15
2
u
13
+ ··· +
19
2
u + 2
a
5
=
3
4
u
14
+
17
4
u
13
+ ··· +
53
4
u + 4
1
2
u
14
5
2
u
13
+ ··· +
1
2
u + 1
a
11
=
u
14
9
2
u
13
+ ··· 4u
3
2
1
2
u
14
+
3
2
u
13
+ ···
25
2
u 4
a
8
=
1
4
u
14
+
3
4
u
13
+ ···
15
2
u
2
13
4
u
1
2
u
14
+
5
2
u
13
+ ··· +
15
2
u + 1
a
4
=
1
2
u
14
+ u
13
+ ···
17
2
u
1
2
1
2
u
14
+
9
2
u
13
+ ··· +
51
2
u + 6
a
4
=
1
2
u
14
+ u
13
+ ···
17
2
u
1
2
1
2
u
14
+
9
2
u
13
+ ··· +
51
2
u + 6
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
14
+ 10u
13
+ 32u
12
+ 70u
11
+ 120u
10
+ 168u
9
+ 200u
8
+
210u
7
+ 194u
6
+ 166u
5
+ 124u
4
+ 88u
3
+ 46u
2
+ 20u + 14
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
15
+ 5u
13
+ ··· + 4u 4
c
2
, c
4
, c
5
c
7
u
15
3u
13
+ ··· + u 1
c
3
, c
6
, c
9
c
11
u
15
5u
14
+ ··· + 18u 4
c
10
u
15
11u
14
+ ··· + 176u 32
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
15
+ 10y
14
+ ··· 96y 16
c
2
, c
4
, c
5
c
7
y
15
6y
14
+ ··· + y 1
c
3
, c
6
, c
9
c
11
y
15
+ 9y
14
+ ··· + 12y 16
c
10
y
15
+ y
14
+ ··· + 768y 1024
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.098485 + 1.023240I
a = 2.08691 0.20313I
b = 1.16195 0.84340I
3.40393 + 1.50668I 7.87127 3.28737I
u = 0.098485 1.023240I
a = 2.08691 + 0.20313I
b = 1.16195 + 0.84340I
3.40393 1.50668I 7.87127 + 3.28737I
u = 1.047180 + 0.169551I
a = 0.083836 0.178717I
b = 0.766772 + 0.909869I
4.75552 7.02459I 1.15185 + 6.50183I
u = 1.047180 0.169551I
a = 0.083836 + 0.178717I
b = 0.766772 0.909869I
4.75552 + 7.02459I 1.15185 6.50183I
u = 0.512134 + 0.744784I
a = 0.671930 + 0.465248I
b = 0.192367 0.393774I
0.10584 1.99596I 0.94373 + 4.15257I
u = 0.512134 0.744784I
a = 0.671930 0.465248I
b = 0.192367 + 0.393774I
0.10584 + 1.99596I 0.94373 4.15257I
u = 0.169504 + 1.110950I
a = 1.315650 + 0.395534I
b = 0.893182 + 0.343990I
4.49181 2.74770I 10.33723 + 3.64679I
u = 0.169504 1.110950I
a = 1.315650 0.395534I
b = 0.893182 0.343990I
4.49181 + 2.74770I 10.33723 3.64679I
u = 0.779677 + 0.941659I
a = 0.230487 + 0.628566I
b = 0.809054 0.248430I
2.30094 + 0.81192I 14.02805 + 1.67822I
u = 0.779677 0.941659I
a = 0.230487 0.628566I
b = 0.809054 + 0.248430I
2.30094 0.81192I 14.02805 1.67822I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.64988 + 1.32515I
a = 1.108270 0.321240I
b = 1.128320 0.520392I
6.65899 + 10.66370I 9.06568 8.84200I
u = 0.64988 1.32515I
a = 1.108270 + 0.321240I
b = 1.128320 + 0.520392I
6.65899 10.66370I 9.06568 + 8.84200I
u = 0.57422 + 1.36194I
a = 1.61047 0.06346I
b = 1.23126 + 1.12739I
2.8705 + 18.8513I 5.24479 9.91686I
u = 0.57422 1.36194I
a = 1.61047 + 0.06346I
b = 1.23126 1.12739I
2.8705 18.8513I 5.24479 + 9.91686I
u = 0.458343
a = 0.746665
b = 0.631819
1.10086 9.32220
6
II. I
u
2
= h458u
21
+ 5062u
20
+ · · · + 989b + 22293, 16339u
21
+ 151170u
20
+
· · · + 12857a + 26538, u
22
+ 10u
21
+ · · · + 121u + 13i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u
2
a
2
=
1.27083u
21
11.7578u
20
+ ··· 38.7638u 2.06409
0.463094u
21
5.11830u
20
+ ··· 185.199u 22.5410
a
10
=
u
u
a
3
=
0.783464u
21
6.59400u
20
+ ··· 72.2572u 8.08431
0.950455u
21
10.2821u
20
+ ··· 151.706u 16.5207
a
1
=
0.0301781u
21
0.556584u
20
+ ··· + 47.9511u + 8.12095
0.670374u
21
5.63195u
20
+ ··· 55.4914u 6.87260
a
5
=
0.407793u
21
+ 6.13961u
20
+ ··· + 99.4987u + 9.79093
3.21941u
21
31.0364u
20
+ ··· 312.446u 36.5511
a
11
=
5.46939u
21
50.2551u
20
+ ··· + 127.721u + 29.0951
4.94338u
21
+ 38.8938u
20
+ ··· 396.051u 48.6906
a
8
=
1.50828u
21
13.8280u
20
+ ··· 167.105u 21.2748
0.758342u
21
+ 6.17189u
20
+ ··· 85.3943u 11.7867
a
4
=
0.164424u
21
+ 1.44170u
20
+ ··· + 36.5840u + 0.859998
2.96461u
21
29.0586u
20
+ ··· 325.218u 37.9434
a
4
=
0.164424u
21
+ 1.44170u
20
+ ··· + 36.5840u + 0.859998
2.96461u
21
29.0586u
20
+ ··· 325.218u 37.9434
(ii) Obstruction class = 1
(iii) Cusp Shapes =
26708
989
u
21
+
254306
989
u
20
+ ··· +
1482904
989
u +
166160
989
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
11
u
9
+ u
8
+ 2u
7
2u
6
5u
5
3u
4
u
2
2u 1)
2
c
2
, c
4
, c
5
c
7
u
22
2u
21
+ ··· + u + 1
c
3
, c
6
, c
9
c
11
u
22
10u
21
+ ··· 121u + 13
c
10
(u
11
9u
10
+ ··· + 288u 64)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
11
2y
10
+ ··· + 2y 1)
2
c
2
, c
4
, c
5
c
7
y
22
8y
21
+ ··· 27y + 1
c
3
, c
6
, c
9
c
11
y
22
+ 18y
21
+ ··· + 335y + 169
c
10
(y
11
+ 7y
10
+ ··· 3072y 4096)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.115902 + 0.927291I
a = 1.75739 + 0.44731I
b = 1.063560 + 0.786366I
2.66286 + 2.55524I 8.64051 2.98354I
u = 0.115902 0.927291I
a = 1.75739 0.44731I
b = 1.063560 0.786366I
2.66286 2.55524I 8.64051 + 2.98354I
u = 1.176180 + 0.028069I
a = 0.095579 + 0.158176I
b = 0.764183 0.949488I
1.29847 12.74380I 2.12242 + 8.78453I
u = 1.176180 0.028069I
a = 0.095579 0.158176I
b = 0.764183 + 0.949488I
1.29847 + 12.74380I 2.12242 8.78453I
u = 0.406334 + 1.133600I
a = 1.85192 + 0.12875I
b = 1.26965 + 1.19997I
3.91310 + 5.97461I 23.9284 13.7192I
u = 0.406334 1.133600I
a = 1.85192 0.12875I
b = 1.26965 1.19997I
3.91310 5.97461I 23.9284 + 13.7192I
u = 1.131520 + 0.515293I
a = 0.212406 0.219355I
b = 0.710834 0.065637I
3.59155 3.95294I 13.25217 + 1.78901I
u = 1.131520 0.515293I
a = 0.212406 + 0.219355I
b = 0.710834 + 0.065637I
3.59155 + 3.95294I 13.25217 1.78901I
u = 0.120881 + 0.735421I
a = 1.04658 1.15332I
b = 0.865794 + 0.005763I
2.66286 2.55524I 8.64051 + 2.98354I
u = 0.120881 0.735421I
a = 1.04658 + 1.15332I
b = 0.865794 0.005763I
2.66286 + 2.55524I 8.64051 2.98354I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.516445 + 1.146110I
a = 1.291240 + 0.466206I
b = 1.233030 + 0.635865I
3.59155 + 3.95294I 13.25217 1.78901I
u = 0.516445 1.146110I
a = 1.291240 0.466206I
b = 1.233030 0.635865I
3.59155 3.95294I 13.25217 + 1.78901I
u = 0.294431 + 1.334600I
a = 1.358550 0.270993I
b = 1.096640 0.608492I
9.48854 11.69821 + 0.I
u = 0.294431 1.334600I
a = 1.358550 + 0.270993I
b = 1.096640 + 0.608492I
9.48854 11.69821 + 0.I
u = 0.014795 + 1.378240I
a = 0.518042 0.284615I
b = 0.476892 0.061840I
1.19109 2.38125I 9.20735 + 4.36639I
u = 0.014795 1.378240I
a = 0.518042 + 0.284615I
b = 0.476892 + 0.061840I
1.19109 + 2.38125I 9.20735 4.36639I
u = 0.566257 + 1.273700I
a = 1.60595 0.02258I
b = 1.23709 1.11266I
1.29847 + 12.74380I 2.12242 8.78453I
u = 0.566257 1.273700I
a = 1.60595 + 0.02258I
b = 1.23709 + 1.11266I
1.29847 12.74380I 2.12242 + 8.78453I
u = 0.438712 + 0.175989I
a = 1.317360 0.248972I
b = 0.692955 0.824926I
1.19109 2.38125I 9.20735 + 4.36639I
u = 0.438712 0.175989I
a = 1.317360 + 0.248972I
b = 0.692955 + 0.824926I
1.19109 + 2.38125I 9.20735 4.36639I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.46031 + 1.82644I
a = 0.255076 + 0.291430I
b = 0.363872 0.119625I
3.91310 5.97461I 0
u = 0.46031 1.82644I
a = 0.255076 0.291430I
b = 0.363872 + 0.119625I
3.91310 + 5.97461I 0
12
III. I
u
3
= h−1564u
11
a
3
1275u
11
a
2
+ · · · + 2263a + 139, 3u
11
a
3
3u
11
a
2
+
· · · 17a + 30, u
12
3u
11
+ · · · + 4u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u
2
a
2
=
a
1.84652a
3
u
11
+ 1.50531a
2
u
11
+ ··· 2.67178a 0.164109
a
10
=
u
u
a
3
=
3.56080a
3
u
11
+ 0.0767414a
2
u
11
+ ··· + 4.18536a 0.592680
1.71429a
3
u
11
+ 1.42857a
2
u
11
+ ··· 5.85714a + 0.428571
a
1
=
1.84652a
3
u
11
1.50531a
2
u
11
+ ··· + 3.67178a + 0.164109
1.71429a
3
u
11
+ 1.42857a
2
u
11
+ ··· 5.85714a + 0.428571
a
5
=
0.923259a
3
u
11
+ 0.243211a
2
u
11
+ ··· 1.16411a 4.40142
0.219599a
3
u
11
0.0342385a
2
u
11
+ ··· + 1.40732a + 5.27981
a
11
=
1.70366a
3
u
11
+ 2.20897a
2
u
11
+ ··· 4.75679a 5.12161
u
11
a
3
2u
11
a
2
+ ··· + 5a + 6
a
8
=
0.0979929a
3
u
11
3.20425a
2
u
11
+ ··· 3.96340a + 0.531287
0.780401a
3
u
11
+ 0.0425030a
2
u
11
+ ··· + 3.59268a + 0.687131
a
4
=
0.587957a
3
u
11
+ 1.84888a
2
u
11
+ ··· 1.78040a 2.10980
1.57143a
3
u
11
+ 1.14286a
2
u
11
+ ··· + 2.71429a + 3.14286
a
4
=
0.587957a
3
u
11
+ 1.84888a
2
u
11
+ ··· 1.78040a 2.10980
1.57143a
3
u
11
+ 1.14286a
2
u
11
+ ··· + 2.71429a + 3.14286
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1972
847
u
11
a
3
4616
847
u
11
a
2
+ ··· +
4696
847
a +
2734
847
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
24
+ 5u
22
+ ··· 10u + 1)
2
c
2
, c
4
, c
5
c
7
u
48
3u
47
+ ··· + 14u + 7
c
3
, c
6
, c
9
c
11
(u
12
+ 3u
11
+ ··· + 4u
2
+ 1)
4
c
10
(u
2
+ u + 1)
24
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
24
+ 10y
23
+ ··· + 20y + 1)
2
c
2
, c
4
, c
5
c
7
y
48
+ 17y
47
+ ··· + 1428y + 49
c
3
, c
6
, c
9
c
11
(y
12
+ 7y
11
+ ··· + 8y + 1)
4
c
10
(y
2
+ y + 1)
24
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.234552 + 1.002020I
a = 0.597795 0.302093I
b = 0.22904 + 1.51797I
2.07792 + 4.93563I 4.02829 7.11030I
u = 0.234552 + 1.002020I
a = 1.25972 + 1.80552I
b = 1.41318 2.05306I
2.07792 + 8.99540I 4.0283 14.0385I
u = 0.234552 + 1.002020I
a = 2.51733 0.10179I
b = 1.131840 + 0.654685I
2.07792 + 4.93563I 4.02829 7.11030I
u = 0.234552 + 1.002020I
a = 2.46751 + 1.09420I
b = 0.212046 0.211827I
2.07792 + 8.99540I 4.0283 14.0385I
u = 0.234552 1.002020I
a = 0.597795 + 0.302093I
b = 0.22904 1.51797I
2.07792 4.93563I 4.02829 + 7.11030I
u = 0.234552 1.002020I
a = 1.25972 1.80552I
b = 1.41318 + 2.05306I
2.07792 8.99540I 4.0283 + 14.0385I
u = 0.234552 1.002020I
a = 2.51733 + 0.10179I
b = 1.131840 0.654685I
2.07792 4.93563I 4.02829 + 7.11030I
u = 0.234552 1.002020I
a = 2.46751 1.09420I
b = 0.212046 + 0.211827I
2.07792 8.99540I 4.0283 + 14.0385I
u = 1.090290 + 0.140460I
a = 0.538183 0.070205I
b = 0.746925 + 0.933267I
2.70277 3.11251I 4.28153 + 9.09172I
u = 1.090290 + 0.140460I
a = 0.165125 0.441725I
b = 0.537490 + 1.055820I
2.70277 + 0.94726I 4.28153 + 2.16352I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.090290 + 0.140460I
a = 0.287918 0.168255I
b = 0.319731 0.721848I
2.70277 + 0.94726I 4.28153 + 2.16352I
u = 1.090290 + 0.140460I
a = 0.216596 0.017151I
b = 0.348815 0.911669I
2.70277 3.11251I 4.28153 + 9.09172I
u = 1.090290 0.140460I
a = 0.538183 + 0.070205I
b = 0.746925 0.933267I
2.70277 + 3.11251I 4.28153 9.09172I
u = 1.090290 0.140460I
a = 0.165125 + 0.441725I
b = 0.537490 1.055820I
2.70277 0.94726I 4.28153 2.16352I
u = 1.090290 0.140460I
a = 0.287918 + 0.168255I
b = 0.319731 + 0.721848I
2.70277 0.94726I 4.28153 2.16352I
u = 1.090290 0.140460I
a = 0.216596 + 0.017151I
b = 0.348815 + 0.911669I
2.70277 + 3.11251I 4.28153 9.09172I
u = 0.185688 + 0.817666I
a = 0.378746 1.189790I
b = 0.006229 0.983343I
2.70277 0.94726I 4.28153 2.16352I
u = 0.185688 + 0.817666I
a = 0.35004 1.84034I
b = 0.69044 + 2.01862I
2.70277 + 3.11251I 4.28153 9.09172I
u = 0.185688 + 0.817666I
a = 2.61261 0.58128I
b = 0.082567 + 0.311441I
2.70277 + 3.11251I 4.28153 9.09172I
u = 0.185688 + 0.817666I
a = 2.84972 + 0.44116I
b = 1.70773 0.70812I
2.70277 0.94726I 4.28153 2.16352I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.185688 0.817666I
a = 0.378746 + 1.189790I
b = 0.006229 + 0.983343I
2.70277 + 0.94726I 4.28153 + 2.16352I
u = 0.185688 0.817666I
a = 0.35004 + 1.84034I
b = 0.69044 2.01862I
2.70277 3.11251I 4.28153 + 9.09172I
u = 0.185688 0.817666I
a = 2.61261 + 0.58128I
b = 0.082567 0.311441I
2.70277 3.11251I 4.28153 + 9.09172I
u = 0.185688 0.817666I
a = 2.84972 0.44116I
b = 1.70773 + 0.70812I
2.70277 + 0.94726I 4.28153 + 2.16352I
u = 0.529049 + 1.245360I
a = 0.882539 + 0.059263I
b = 0.550794 + 0.261194I
0.62485 2.52824I 0.25324 1.69361I
u = 0.529049 + 1.245360I
a = 1.195580 + 0.202913I
b = 0.816916 + 0.968854I
0.62485 6.58801I 0.25324 + 5.23459I
u = 0.529049 + 1.245360I
a = 1.68191 + 0.25584I
b = 1.25894 1.09149I
0.62485 6.58801I 0.25324 + 5.23459I
u = 0.529049 + 1.245360I
a = 0.242083 + 0.132540I
b = 0.223576 0.582679I
0.62485 2.52824I 0.25324 1.69361I
u = 0.529049 1.245360I
a = 0.882539 0.059263I
b = 0.550794 0.261194I
0.62485 + 2.52824I 0.25324 + 1.69361I
u = 0.529049 1.245360I
a = 1.195580 0.202913I
b = 0.816916 0.968854I
0.62485 + 6.58801I 0.25324 5.23459I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.529049 1.245360I
a = 1.68191 0.25584I
b = 1.25894 + 1.09149I
0.62485 + 6.58801I 0.25324 5.23459I
u = 0.529049 1.245360I
a = 0.242083 0.132540I
b = 0.223576 + 0.582679I
0.62485 + 2.52824I 0.25324 + 1.69361I
u = 0.251512 + 0.449740I
a = 0.586879 + 0.230300I
b = 0.619548 0.991194I
0.62485 2.52824I 0.25324 1.69361I
u = 0.251512 + 0.449740I
a = 0.96589 + 1.86894I
b = 0.253152 + 0.971646I
0.62485 6.58801I 0.25324 + 5.23459I
u = 0.251512 + 0.449740I
a = 2.30449 + 0.84444I
b = 0.038774 0.733952I
0.62485 2.52824I 0.25324 1.69361I
u = 0.251512 + 0.449740I
a = 3.34233 + 0.09769I
b = 1.45679 + 0.39389I
0.62485 6.58801I 0.25324 + 5.23459I
u = 0.251512 0.449740I
a = 0.586879 0.230300I
b = 0.619548 + 0.991194I
0.62485 + 2.52824I 0.25324 + 1.69361I
u = 0.251512 0.449740I
a = 0.96589 1.86894I
b = 0.253152 0.971646I
0.62485 + 6.58801I 0.25324 5.23459I
u = 0.251512 0.449740I
a = 2.30449 0.84444I
b = 0.038774 + 0.733952I
0.62485 + 2.52824I 0.25324 + 1.69361I
u = 0.251512 0.449740I
a = 3.34233 0.09769I
b = 1.45679 0.39389I
0.62485 + 6.58801I 0.25324 5.23459I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.55241 + 1.40748I
a = 1.117820 + 0.247439I
b = 0.85749 1.22119I
2.07792 8.99540I 4.0283 + 14.0385I
u = 0.55241 + 1.40748I
a = 0.816501 0.179135I
b = 0.437562 0.344284I
2.07792 4.93563I 4.02829 + 7.11030I
u = 0.55241 + 1.40748I
a = 0.633601 0.469916I
b = 0.527372 + 0.822492I
2.07792 4.93563I 4.02829 + 7.11030I
u = 0.55241 + 1.40748I
a = 1.77136 0.08131I
b = 1.22673 + 0.90431I
2.07792 8.99540I 4.0283 + 14.0385I
u = 0.55241 1.40748I
a = 1.117820 0.247439I
b = 0.85749 + 1.22119I
2.07792 + 8.99540I 4.0283 14.0385I
u = 0.55241 1.40748I
a = 0.816501 + 0.179135I
b = 0.437562 + 0.344284I
2.07792 + 4.93563I 4.02829 7.11030I
u = 0.55241 1.40748I
a = 0.633601 + 0.469916I
b = 0.527372 0.822492I
2.07792 + 4.93563I 4.02829 7.11030I
u = 0.55241 1.40748I
a = 1.77136 + 0.08131I
b = 1.22673 0.90431I
2.07792 + 8.99540I 4.0283 14.0385I
20
IV. I
u
4
= h−44u
15
+ 195u
14
+ · · · + 31b 7, 139u
15
752u
14
+ · · · + 93a
538, u
16
5u
15
+ · · · 13u + 3i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u
2
a
2
=
1.49462u
15
+ 8.08602u
14
+ ··· 19.9355u + 5.78495
1.41935u
15
6.29032u
14
+ ··· + 5.03226u + 0.225806
a
10
=
u
u
a
3
=
0.688172u
15
+ 2.98925u
14
+ ··· 1.25806u + 1.52688
0.612903u
15
1.19355u
14
+ ··· 13.6452u + 4.48387
a
1
=
1.04301u
15
+ 5.31183u
14
+ ··· 12.5161u + 3.72043
0.580645u
15
2.70968u
14
+ ··· 3.03226u + 1.77419
a
5
=
0.698925u
15
2.81720u
14
+ ··· + 4.38710u + 3.04301
0.516129u
15
2.74194u
14
+ ··· + 14.1935u 3.64516
a
11
=
0.559140u
15
+ 1.05376u
14
+ ··· + 32.2903u 12.6344
0.870968u
15
+ 5.06452u
14
+ ··· 27.4516u + 5.83871
a
8
=
0.344086u
15
+ 1.49462u
14
+ ··· 2.12903u 1.23656
0.193548u
15
+ 0.903226u
14
+ ··· 4.32258u + 0.741935
a
4
=
0.967742u
15
4.51613u
14
+ ··· + 18.6129u + 0.290323
0.258065u
15
0.870968u
14
+ ··· + 7.09677u 2.32258
a
4
=
0.967742u
15
4.51613u
14
+ ··· + 18.6129u + 0.290323
0.258065u
15
0.870968u
14
+ ··· + 7.09677u 2.32258
(ii) Obstruction class = 1
(iii) Cusp Shapes =
73
31
u
15
+
320
31
u
14
+ ···
3387
31
u +
936
31
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
16
+ u
14
+ 8u
12
4u
10
+ 9u
8
11u
6
+ 18u
4
2u
2
+ 7
c
2
, c
5
u
16
u
15
+ ··· u + 1
c
3
, c
9
u
16
+ 5u
15
+ ··· + 13u + 3
c
4
, c
7
u
16
+ u
15
+ ··· + u + 1
c
6
, c
11
u
16
5u
15
+ ··· 13u + 3
c
10
u
16
+ 7u
14
+ 23u
12
+ 47u
10
+ 66u
8
+ 62u
6
+ 46u
4
+ 20u
2
+ 7
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
8
+ y
7
+ 8y
6
4y
5
+ 9y
4
11y
3
+ 18y
2
2y + 7)
2
c
2
, c
4
, c
5
c
7
y
16
+ 5y
15
+ ··· + 11y + 1
c
3
, c
6
, c
9
c
11
y
16
+ 15y
15
+ ··· + 137y + 9
c
10
(y
8
+ 7y
7
+ 23y
6
+ 47y
5
+ 66y
4
+ 62y
3
+ 46y
2
+ 20y + 7)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.156162 + 0.941024I
a = 2.01687 + 0.31543I
b = 0.833985 1.005380I
2.04808 + 7.98268I 4.81427 4.30375I
u = 0.156162 0.941024I
a = 2.01687 0.31543I
b = 0.833985 + 1.005380I
2.04808 7.98268I 4.81427 + 4.30375I
u = 1.147790 + 0.077838I
a = 0.110982 0.089673I
b = 0.448678 + 0.874321I
2.40315 2.04689I 0.09415 + 3.67599I
u = 1.147790 0.077838I
a = 0.110982 + 0.089673I
b = 0.448678 0.874321I
2.40315 + 2.04689I 0.09415 3.67599I
u = 0.011362 + 0.809876I
a = 2.02963 0.17201I
b = 0.723898 + 1.047530I
2.40315 + 2.04689I 0.09415 3.67599I
u = 0.011362 0.809876I
a = 2.02963 + 0.17201I
b = 0.723898 1.047530I
2.40315 2.04689I 0.09415 + 3.67599I
u = 0.369082 + 1.156850I
a = 1.77547 0.00971I
b = 1.13680 1.17673I
3.58132 5.91907I 0.02049 + 8.16668I
u = 0.369082 1.156850I
a = 1.77547 + 0.00971I
b = 1.13680 + 1.17673I
3.58132 + 5.91907I 0.02049 8.16668I
u = 0.55090 + 1.37318I
a = 1.41055 0.15096I
b = 1.00775 + 1.04644I
2.04808 7.98268I 4.81427 + 4.30375I
u = 0.55090 1.37318I
a = 1.41055 + 0.15096I
b = 1.00775 1.04644I
2.04808 + 7.98268I 4.81427 4.30375I
24
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.58869 + 1.45312I
a = 0.564595 0.008590I
b = 0.468248 0.352677I
0.88608 3.10886I 7.3004 + 13.1054I
u = 0.58869 1.45312I
a = 0.564595 + 0.008590I
b = 0.468248 + 0.352677I
0.88608 + 3.10886I 7.3004 13.1054I
u = 0.144483 + 0.400393I
a = 2.09451 1.01208I
b = 0.368009 + 0.981568I
0.88608 + 3.10886I 7.3004 13.1054I
u = 0.144483 0.400393I
a = 2.09451 + 1.01208I
b = 0.368009 0.981568I
0.88608 3.10886I 7.3004 + 13.1054I
u = 0.13341 + 1.61975I
a = 0.377922 0.341658I
b = 0.126722 + 0.399203I
3.58132 5.91907I 0.02049 + 8.16668I
u = 0.13341 1.61975I
a = 0.377922 + 0.341658I
b = 0.126722 0.399203I
3.58132 + 5.91907I 0.02049 8.16668I
25
V. I
u
5
=
h17a
3
u
2
24a
2
u
2
+· · ·+68a46, 2a
3
u
2
+3a
2
u
2
+· · ·5a+1, u
3
u
2
+2u1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u
2
a
2
=
a
0.680000a
3
u
2
+ 0.960000a
2
u
2
+ ··· 2.72000a + 1.84000
a
10
=
u
u
a
3
=
0.280000a
3
u
2
+ 0.160000a
2
u
2
+ ··· + 0.880000a + 0.640000
2
5
a
3
u
2
+
4
5
a
2
u
2
+ ···
13
5
a +
6
5
a
1
=
0.680000a
3
u
2
0.960000a
2
u
2
+ ··· + 3.72000a 1.84000
2
5
a
3
u
2
+
4
5
a
2
u
2
+ ···
8
5
a +
6
5
a
5
=
0.440000a
3
u
2
+ 1.28000a
2
u
2
+ ··· 2.76000a + 3.12000
0.240000a
3
u
2
0.320000a
2
u
2
+ ··· 0.960000a + 0.720000
a
11
=
0.880000a
3
u
2
+ 1.36000a
2
u
2
+ ··· 4.52000a + 3.44000
1
5
a
3
u
2
2
5
a
2
u
2
+ ··· +
4
5
a
8
5
a
8
=
3
5
a
3
u
2
2
5
a
2
u
2
+ ··· +
7
5
a
8
5
0.160000a
3
u
2
1.08000a
2
u
2
+ ··· + 1.36000a 0.320000
a
4
=
4
5
a
3
u
2
+
3
5
a
2
u
2
+ ···
6
5
a +
7
5
1
5
a
3
u
2
+
3
5
a
2
u
2
+ ···
6
5
a +
7
5
a
4
=
4
5
a
3
u
2
+
3
5
a
2
u
2
+ ···
6
5
a +
7
5
1
5
a
3
u
2
+
3
5
a
2
u
2
+ ···
6
5
a +
7
5
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
52
25
a
3
u
2
24
25
a
3
u
44
25
a
2
u
2
+
68
25
a
3
+
28
25
a
2
u+
112
25
u
2
a
96
25
a
2
44
25
au
264
25
u
2
+
208
25
a+
168
25
u
226
25
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
12
+ 5u
11
+ ··· + 50u + 25
c
2
, c
4
, c
5
c
7
u
12
u
11
5u
9
+ 12u
8
5u
7
5u
6
+ 9u
5
8u
3
+ 4u
2
+ 4u + 1
c
3
, c
6
, c
9
c
11
(u
3
+ u
2
+ 2u + 1)
4
c
10
(u
2
+ u + 1)
6
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
12
13y
11
+ ··· 1400y + 625
c
2
, c
4
, c
5
c
7
y
12
y
11
+ ··· 8y + 1
c
3
, c
6
, c
9
c
11
(y
3
+ 3y
2
+ 2y 1)
4
c
10
(y
2
+ y + 1)
6
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.557957 + 0.898602I
b = 0.291045 + 0.197103I
6.04826 3.62636I 11.01951 + 2.49479I
u = 0.215080 + 1.307140I
a = 1.48598 + 0.34361I
b = 1.37483 0.58456I
6.04826 3.62636I 11.01951 + 2.49479I
u = 0.215080 + 1.307140I
a = 1.42930 0.86373I
b = 1.16740 + 1.64205I
6.04826 7.68613I 11.0195 + 9.4230I
u = 0.215080 + 1.307140I
a = 2.04108 0.56107I
b = 0.961053 0.509737I
6.04826 7.68613I 11.0195 + 9.4230I
u = 0.215080 1.307140I
a = 0.557957 0.898602I
b = 0.291045 0.197103I
6.04826 + 3.62636I 11.01951 2.49479I
u = 0.215080 1.307140I
a = 1.48598 0.34361I
b = 1.37483 + 0.58456I
6.04826 + 3.62636I 11.01951 2.49479I
u = 0.215080 1.307140I
a = 1.42930 + 0.86373I
b = 1.16740 1.64205I
6.04826 + 7.68613I 11.0195 9.4230I
u = 0.215080 1.307140I
a = 2.04108 + 0.56107I
b = 0.961053 + 0.509737I
6.04826 + 7.68613I 11.0195 9.4230I
u = 0.569840
a = 0.938451 + 0.394948I
b = 0.365745 0.996574I
2.22691 2.02988I 2.03902 + 3.46410I
u = 0.569840
a = 0.938451 0.394948I
b = 0.365745 + 0.996574I
2.22691 + 2.02988I 2.03902 3.46410I
29
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.569840
a = 0.101346 + 1.406030I
b = 0.743183 + 0.342830I
2.22691 2.02988I 2.03902 + 3.46410I
u = 0.569840
a = 0.101346 1.406030I
b = 0.743183 0.342830I
2.22691 + 2.02988I 2.03902 3.46410I
30
VI. I
u
6
= hb u + 1, a u, u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u 1
a
2
=
u
u 1
a
10
=
u
u
a
3
=
1
2u
a
1
=
0
u
a
5
=
0
u
a
11
=
u
u 1
a
8
=
u
3u 2
a
4
=
1
u + 1
a
4
=
1
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u 6
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
2
u + 1
c
2
, c
7
u
2
3u + 3
c
3
, c
4
, c
5
c
6
, c
9
, c
10
c
11
u
2
+ u + 1
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
8
c
9
, c
10
, c
11
y
2
+ y + 1
c
2
, c
7
y
2
3y + 9
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 + 0.866025I
6.08965I 0. + 10.39230I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 0.866025I
6.08965I 0. 10.39230I
34
VII. I
u
7
= hb + u 2, a + 2, u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u 1
a
2
=
2
u + 2
a
10
=
u
u
a
3
=
1
u + 1
a
1
=
u 2
u + 3
a
5
=
2u 3
3u + 3
a
11
=
2u 1
2u
a
8
=
u
u + 1
a
4
=
3u 2
3u
a
4
=
3u 2
3u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u 6
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
2
u + 1
c
2
, c
3
, c
6
c
7
, c
9
, c
10
c
11
u
2
+ u + 1
c
4
, c
5
u
2
3u + 3
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
9
, c
10
, c
11
y
2
+ y + 1
c
4
, c
5
y
2
3y + 9
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 2.00000
b = 1.50000 0.86603I
6.08965I 0. + 10.39230I
u = 0.500000 0.866025I
a = 2.00000
b = 1.50000 + 0.86603I
6.08965I 0. 10.39230I
38
VIII. I
u
8
= hb + u 1, a + 1, u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u 1
a
2
=
1
u + 1
a
10
=
u
u
a
3
=
0
u
a
1
=
1
u + 1
a
5
=
u
u
a
11
=
u
u
a
8
=
0
u
a
4
=
u
u 1
a
4
=
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 4
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
10
u
2
c
2
, c
5
, c
6
c
11
u
2
u + 1
c
3
, c
4
, c
7
c
9
u
2
+ u + 1
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
10
y
2
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
11
y
2
+ y + 1
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 0.866025I
4.05977I 0. + 6.92820I
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
4.05977I 0. 6.92820I
42
IX. I
u
9
= hb, a 1, u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u 1
a
2
=
1
0
a
10
=
u
u
a
3
=
u
u + 1
a
1
=
u
u
a
5
=
1
0
a
11
=
0
u
a
8
=
1
0
a
4
=
1
0
a
4
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 2
43
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
2
u + 1
c
2
, c
3
, c
6
c
7
, c
9
, c
10
c
11
u
2
+ u + 1
c
4
, c
5
u
2
44
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
6
, c
7
, c
8
c
9
, c
10
, c
11
y
2
+ y + 1
c
4
, c
5
y
2
45
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0
2.02988I 0. + 3.46410I
u = 0.500000 0.866025I
a = 1.00000
b = 0
2.02988I 0. 3.46410I
46
X. I
u
10
= hb + u, a u, u
2
u + 1i
(i) Arc colorings
a
6
=
1
0
a
9
=
0
u
a
7
=
1
u 1
a
2
=
u
u
a
10
=
u
u
a
3
=
u
u
a
1
=
2u 1
2u
a
5
=
u + 2
u 1
a
11
=
1
u 1
a
8
=
1
u 1
a
4
=
2
u 2
a
4
=
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 2
47
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
2
u + 1
c
2
, c
7
u
2
c
3
, c
4
, c
5
c
6
, c
9
, c
10
c
11
u
2
+ u + 1
48
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
8
c
9
, c
10
, c
11
y
2
+ y + 1
c
2
, c
7
y
2
49
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
2.02988I 0. + 3.46410I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
2.02988I 0. 3.46410I
50
XI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
u
2
(u
2
u + 1)
4
(u
11
u
9
+ u
8
+ 2u
7
2u
6
5u
5
3u
4
u
2
2u 1)
2
· (u
12
+ 5u
11
+ ··· + 50u + 25)(u
15
+ 5u
13
+ ··· + 4u 4)
· (u
16
+ u
14
+ 8u
12
4u
10
+ 9u
8
11u
6
+ 18u
4
2u
2
+ 7)
· (u
24
+ 5u
22
+ ··· 10u + 1)
2
c
2
, c
5
u
2
(u
2
3u + 3)(u
2
u + 1)(u
2
+ u + 1)
2
· (u
12
u
11
5u
9
+ 12u
8
5u
7
5u
6
+ 9u
5
8u
3
+ 4u
2
+ 4u + 1)
· (u
15
3u
13
+ ··· + u 1)(u
16
u
15
+ ··· u + 1)
· (u
22
2u
21
+ ··· + u + 1)(u
48
3u
47
+ ··· + 14u + 7)
c
3
, c
9
((u
2
+ u + 1)
5
)(u
3
+ u
2
+ 2u + 1)
4
(u
12
+ 3u
11
+ ··· + 4u
2
+ 1)
4
· (u
15
5u
14
+ ··· + 18u 4)(u
16
+ 5u
15
+ ··· + 13u + 3)
· (u
22
10u
21
+ ··· 121u + 13)
c
4
, c
7
u
2
(u
2
3u + 3)(u
2
+ u + 1)
3
· (u
12
u
11
5u
9
+ 12u
8
5u
7
5u
6
+ 9u
5
8u
3
+ 4u
2
+ 4u + 1)
· (u
15
3u
13
+ ··· + u 1)(u
16
+ u
15
+ ··· + u + 1)
· (u
22
2u
21
+ ··· + u + 1)(u
48
3u
47
+ ··· + 14u + 7)
c
6
, c
11
(u
2
u + 1)(u
2
+ u + 1)
4
(u
3
+ u
2
+ 2u + 1)
4
· ((u
12
+ 3u
11
+ ··· + 4u
2
+ 1)
4
)(u
15
5u
14
+ ··· + 18u 4)
· (u
16
5u
15
+ ··· 13u + 3)(u
22
10u
21
+ ··· 121u + 13)
c
10
u
2
(u
2
+ u + 1)
34
(u
11
9u
10
+ ··· + 288u 64)
2
· (u
15
11u
14
+ ··· + 176u 32)
· (u
16
+ 7u
14
+ 23u
12
+ 47u
10
+ 66u
8
+ 62u
6
+ 46u
4
+ 20u
2
+ 7)
51
XII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
2
(y
2
+ y + 1)
4
(y
8
+ y
7
+ 8y
6
4y
5
+ 9y
4
11y
3
+ 18y
2
2y + 7)
2
· ((y
11
2y
10
+ ··· + 2y 1)
2
)(y
12
13y
11
+ ··· 1400y + 625)
· (y
15
+ 10y
14
+ ··· 96y 16)(y
24
+ 10y
23
+ ··· + 20y + 1)
2
c
2
, c
4
, c
5
c
7
y
2
(y
2
3y + 9)(y
2
+ y + 1)
3
(y
12
y
11
+ ··· 8y + 1)
· (y
15
6y
14
+ ··· + y 1)(y
16
+ 5y
15
+ ··· + 11y + 1)
· (y
22
8y
21
+ ··· 27y + 1)(y
48
+ 17y
47
+ ··· + 1428y + 49)
c
3
, c
6
, c
9
c
11
((y
2
+ y + 1)
5
)(y
3
+ 3y
2
+ 2y 1)
4
(y
12
+ 7y
11
+ ··· + 8y + 1)
4
· (y
15
+ 9y
14
+ ··· + 12y 16)(y
16
+ 15y
15
+ ··· + 137y + 9)
· (y
22
+ 18y
21
+ ··· + 335y + 169)
c
10
y
2
(y
2
+ y + 1)
34
· (y
8
+ 7y
7
+ 23y
6
+ 47y
5
+ 66y
4
+ 62y
3
+ 46y
2
+ 20y + 7)
2
· ((y
11
+ 7y
10
+ ··· 3072y 4096)
2
)(y
15
+ y
14
+ ··· + 768y 1024)
52