11a
299
(K11a
299
)
A knot diagram
1
Linearized knot diagam
4 8 1 9 2 11 10 5 3 7 6
Solving Sequence
6,11
7
1,4
2 3 5 10 8 9
c
6
c
11
c
1
c
3
c
5
c
10
c
7
c
9
c
2
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.98094 × 10
27
u
50
+ 3.57674 × 10
27
u
49
+ ··· + 5.12235 × 10
28
b 4.16694 × 10
28
,
4.56338 × 10
28
u
50
+ 8.09970 × 10
28
u
49
+ ··· + 5.12235 × 10
28
a + 2.57618 × 10
28
, u
51
+ 2u
50
+ ··· + u
2
1i
I
u
2
= hu
2
+ 5b + 3u + 4, 4u
2
+ 5a 8u + 6, u
3
u
2
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.98×10
27
u
50
+3.58×10
27
u
49
+· · ·+5.12×10
28
b4.17×10
28
, 4.56×
10
28
u
50
+8.10×10
28
u
49
+· · ·+5.12 ×10
28
a+2.58×10
28
, u
51
+2u
50
+· · ·+u
2
1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
1
=
u
u
a
4
=
0.890878u
50
1.58125u
49
+ ··· + 2.76933u 0.502929
0.0777171u
50
0.0698262u
49
+ ··· 0.830913u + 0.813483
a
2
=
0.911790u
50
1.62215u
49
+ ··· + 3.55461u 0.444712
0.00216816u
50
0.149791u
49
+ ··· 0.143535u + 0.845107
a
3
=
0.848184u
50
1.53135u
49
+ ··· + 1.95617u 0.527682
0.0350226u
50
0.119723u
49
+ ··· 0.0177518u + 0.838236
a
5
=
0.219194u
50
+ 0.0575194u
49
+ ··· 2.71987u + 0.983462
0.568042u
50
+ 1.43143u
49
+ ··· 0.564791u + 0.0862524
a
10
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
1.21389u
50
+ 2.29120u
49
+ ··· 2.54183u + 0.639066
0.214736u
50
0.901043u
49
+ ··· + 1.59632u + 0.327975
a
9
=
1.21389u
50
+ 2.29120u
49
+ ··· 2.54183u + 0.639066
0.214736u
50
0.901043u
49
+ ··· + 1.59632u + 0.327975
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0485520u
50
0.908190u
49
+ ··· 14.7258u 8.93442
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
51
4u
50
+ ··· 49u + 25
c
2
u
51
+ u
50
+ ··· + 380u + 200
c
4
, c
8
u
51
+ 2u
50
+ ··· + 4u + 1
c
5
5(5u
51
28u
50
+ ··· 30u + 857)
c
6
, c
7
, c
10
c
11
u
51
2u
50
+ ··· u
2
+ 1
c
9
5(5u
51
9u
50
+ ··· + 1703u + 239)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
51
26y
50
+ ··· + 17851y 625
c
2
y
51
+ 21y
50
+ ··· 118000y 40000
c
4
, c
8
y
51
+ 28y
50
+ ··· + 2y 1
c
5
25(25y
51
+ 176y
50
+ ··· 1375442y 734449)
c
6
, c
7
, c
10
c
11
y
51
+ 60y
50
+ ··· + 2y 1
c
9
25(25y
51
+ 739y
50
+ ··· 637947y 57121)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.552527 + 0.820307I
a = 0.48391 1.52868I
b = 1.72817 + 0.85216I
2.62483 + 11.59540I 7.79067 8.85645I
u = 0.552527 0.820307I
a = 0.48391 + 1.52868I
b = 1.72817 0.85216I
2.62483 11.59540I 7.79067 + 8.85645I
u = 0.589306 + 0.788540I
a = 0.51919 1.38595I
b = 1.55822 + 0.77897I
0.80955 5.70999I 10.32903 + 7.24097I
u = 0.589306 0.788540I
a = 0.51919 + 1.38595I
b = 1.55822 0.77897I
0.80955 + 5.70999I 10.32903 7.24097I
u = 0.433100 + 0.988087I
a = 0.85921 1.15463I
b = 0.784864 + 0.164197I
3.75291 3.24873I 11.00000 + 0.I
u = 0.433100 0.988087I
a = 0.85921 + 1.15463I
b = 0.784864 0.164197I
3.75291 + 3.24873I 11.00000 + 0.I
u = 0.376973 + 0.809467I
a = 1.031830 0.475824I
b = 0.043546 0.349975I
5.59371 + 5.41403I 4.14016 6.52359I
u = 0.376973 0.809467I
a = 1.031830 + 0.475824I
b = 0.043546 + 0.349975I
5.59371 5.41403I 4.14016 + 6.52359I
u = 0.249787 + 0.812726I
a = 0.469781 0.492664I
b = 0.095865 + 0.184201I
1.73380 1.81855I 6.35906 + 4.36354I
u = 0.249787 0.812726I
a = 0.469781 + 0.492664I
b = 0.095865 0.184201I
1.73380 + 1.81855I 6.35906 4.36354I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.493565 + 0.692270I
a = 0.247144 1.224100I
b = 1.21189 + 1.00104I
4.68147 + 1.04951I 4.16172 4.32794I
u = 0.493565 0.692270I
a = 0.247144 + 1.224100I
b = 1.21189 1.00104I
4.68147 1.04951I 4.16172 + 4.32794I
u = 0.773905 + 0.191317I
a = 0.320071 0.624747I
b = 1.381640 0.030498I
2.64708 + 1.15805I 10.73331 5.02870I
u = 0.773905 0.191317I
a = 0.320071 + 0.624747I
b = 1.381640 + 0.030498I
2.64708 1.15805I 10.73331 + 5.02870I
u = 0.744224 + 0.089987I
a = 0.047354 0.638462I
b = 1.47794 0.27354I
0.42114 7.27131I 10.81656 + 5.67006I
u = 0.744224 0.089987I
a = 0.047354 + 0.638462I
b = 1.47794 + 0.27354I
0.42114 + 7.27131I 10.81656 5.67006I
u = 0.128736 + 0.681128I
a = 1.63090 0.76962I
b = 1.72989 + 2.00427I
1.377800 + 0.247335I 11.41702 + 6.59841I
u = 0.128736 0.681128I
a = 1.63090 + 0.76962I
b = 1.72989 2.00427I
1.377800 0.247335I 11.41702 6.59841I
u = 0.328726 + 0.602476I
a = 0.683354 + 0.933926I
b = 1.027660 0.198210I
0.09032 4.00238I 9.47119 + 9.47766I
u = 0.328726 0.602476I
a = 0.683354 0.933926I
b = 1.027660 + 0.198210I
0.09032 + 4.00238I 9.47119 9.47766I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.309159 + 1.281950I
a = 0.53813 1.48328I
b = 0.630951 + 0.896457I
1.88408 2.74356I 0
u = 0.309159 1.281950I
a = 0.53813 + 1.48328I
b = 0.630951 0.896457I
1.88408 + 2.74356I 0
u = 0.235448 + 0.507844I
a = 0.06586 + 1.89337I
b = 1.226960 0.240501I
1.46138 + 0.98661I 12.15795 1.22039I
u = 0.235448 0.507844I
a = 0.06586 1.89337I
b = 1.226960 + 0.240501I
1.46138 0.98661I 12.15795 + 1.22039I
u = 0.535402 + 0.073202I
a = 0.434598 1.044040I
b = 0.708461 0.403158I
3.00953 + 2.35838I 8.15249 2.65728I
u = 0.535402 0.073202I
a = 0.434598 + 1.044040I
b = 0.708461 + 0.403158I
3.00953 2.35838I 8.15249 + 2.65728I
u = 0.271262 + 0.396700I
a = 0.75415 + 2.38170I
b = 0.944727 0.152860I
1.67074 + 1.07820I 12.01082 5.84608I
u = 0.271262 0.396700I
a = 0.75415 2.38170I
b = 0.944727 + 0.152860I
1.67074 1.07820I 12.01082 + 5.84608I
u = 0.01718 + 1.55667I
a = 0.37477 + 2.03786I
b = 0.552519 1.004140I
5.04838 + 1.69001I 0
u = 0.01718 1.55667I
a = 0.37477 2.03786I
b = 0.552519 + 1.004140I
5.04838 1.69001I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.04180 + 1.57969I
a = 1.09580 + 1.51782I
b = 1.49270 0.77222I
5.80181 + 1.83329I 0
u = 0.04180 1.57969I
a = 1.09580 1.51782I
b = 1.49270 + 0.77222I
5.80181 1.83329I 0
u = 0.06969 + 1.58540I
a = 0.646529 + 0.973357I
b = 1.354660 0.387992I
7.57583 5.34940I 0
u = 0.06969 1.58540I
a = 0.646529 0.973357I
b = 1.354660 + 0.387992I
7.57583 + 5.34940I 0
u = 0.339596 + 0.188204I
a = 1.55128 + 2.09918I
b = 0.402028 + 0.283631I
1.01423 + 1.50344I 14.02114 0.26378I
u = 0.339596 0.188204I
a = 1.55128 2.09918I
b = 0.402028 0.283631I
1.01423 1.50344I 14.02114 + 0.26378I
u = 0.02693 + 1.61334I
a = 3.90639 0.28673I
b = 3.98695 + 0.78800I
9.33157 0.28182I 0
u = 0.02693 1.61334I
a = 3.90639 + 0.28673I
b = 3.98695 0.78800I
9.33157 + 0.28182I 0
u = 0.15866 + 1.61313I
a = 0.90457 2.22903I
b = 1.33704 + 1.71038I
12.51670 + 3.55318I 0
u = 0.15866 1.61313I
a = 0.90457 + 2.22903I
b = 1.33704 1.71038I
12.51670 3.55318I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.10468 + 1.64228I
a = 0.285194 + 0.100077I
b = 0.495111 0.386510I
14.0417 + 7.2484I 0
u = 0.10468 1.64228I
a = 0.285194 0.100077I
b = 0.495111 + 0.386510I
14.0417 7.2484I 0
u = 0.08123 + 1.64771I
a = 0.021744 0.179863I
b = 0.560164 + 0.015522I
10.29890 3.16367I 0
u = 0.08123 1.64771I
a = 0.021744 + 0.179863I
b = 0.560164 0.015522I
10.29890 + 3.16367I 0
u = 0.17216 + 1.64138I
a = 1.15226 2.05629I
b = 1.58595 + 1.37531I
7.44997 8.60283I 0
u = 0.17216 1.64138I
a = 1.15226 + 2.05629I
b = 1.58595 1.37531I
7.44997 + 8.60283I 0
u = 0.16225 + 1.65033I
a = 1.31880 2.12033I
b = 1.83667 + 1.38127I
11.0558 + 14.3418I 0
u = 0.16225 1.65033I
a = 1.31880 + 2.12033I
b = 1.83667 1.38127I
11.0558 14.3418I 0
u = 0.08999 + 1.68712I
a = 0.334351 0.580821I
b = 0.022884 + 0.143685I
13.10850 1.33730I 0
u = 0.08999 1.68712I
a = 0.334351 + 0.580821I
b = 0.022884 0.143685I
13.10850 + 1.33730I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.295696
a = 0.935819
b = 0.188257
0.590385 17.0960
10
II. I
u
2
= hu
2
+ 5b + 3u + 4, 4u
2
+ 5a 8u + 6, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
1
=
u
u
a
4
=
4
5
u
2
+
8
5
u
6
5
1
5
u
2
3
5
u
4
5
a
2
=
4
5
u
2
+
3
5
u
6
5
1
5
u
2
+
2
5
u
4
5
a
3
=
4
5
u
2
+
3
5
u
6
5
1
5
u
2
+
2
5
u
4
5
a
5
=
13
25
u
2
+
6
25
u +
8
25
7
25
u
2
+
9
25
u
13
25
a
10
=
u
u
2
u + 1
a
8
=
u
2
+ 1
u
2
u + 1
a
9
=
4
25
u
2
+
27
25
u +
11
25
31
25
u
2
22
25
u +
29
25
a
9
=
4
25
u
2
+
27
25
u +
11
25
31
25
u
2
22
25
u +
29
25
(ii) Obstruction class = 1
(iii) Cusp Shapes =
12
25
u
2
+
69
25
u
408
25
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
3
c
2
u
3
c
3
(u + 1)
3
c
4
u
3
+ u
2
1
c
5
5(5u
3
+ 7u
2
+ 4u + 1)
c
6
, c
7
u
3
u
2
+ 2u 1
c
8
u
3
u
2
+ 1
c
9
5(5u
3
+ 4u
2
u 1)
c
10
, c
11
u
3
+ u
2
+ 2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
(y 1)
3
c
2
y
3
c
4
, c
8
y
3
y
2
+ 2y 1
c
5
25(25y
3
9y
2
+ 2y 1)
c
6
, c
7
, c
10
c
11
y
3
+ 3y
2
+ 2y 1
c
9
25(25y
3
26y
2
+ 9y 1)
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.47401 + 1.64160I
b = 0.596576 0.896741I
1.37919 2.82812I 14.9284 + 3.3378I
u = 0.215080 1.307140I
a = 0.47401 1.64160I
b = 0.596576 + 0.896741I
1.37919 + 2.82812I 14.9284 3.3378I
u = 0.569840
a = 0.548030
b = 1.20685
2.75839 14.9030
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
51
4u
50
+ ··· 49u + 25)
c
2
u
3
(u
51
+ u
50
+ ··· + 380u + 200)
c
3
((u + 1)
3
)(u
51
4u
50
+ ··· 49u + 25)
c
4
(u
3
+ u
2
1)(u
51
+ 2u
50
+ ··· + 4u + 1)
c
5
25(5u
3
+ 7u
2
+ 4u + 1)(5u
51
28u
50
+ ··· 30u + 857)
c
6
, c
7
(u
3
u
2
+ 2u 1)(u
51
2u
50
+ ··· u
2
+ 1)
c
8
(u
3
u
2
+ 1)(u
51
+ 2u
50
+ ··· + 4u + 1)
c
9
25(5u
3
+ 4u
2
u 1)(5u
51
9u
50
+ ··· + 1703u + 239)
c
10
, c
11
(u
3
+ u
2
+ 2u + 1)(u
51
2u
50
+ ··· u
2
+ 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
((y 1)
3
)(y
51
26y
50
+ ··· + 17851y 625)
c
2
y
3
(y
51
+ 21y
50
+ ··· 118000y 40000)
c
4
, c
8
(y
3
y
2
+ 2y 1)(y
51
+ 28y
50
+ ··· + 2y 1)
c
5
625(25y
3
9y
2
+ 2y 1)
· (25y
51
+ 176y
50
+ ··· 1375442y 734449)
c
6
, c
7
, c
10
c
11
(y
3
+ 3y
2
+ 2y 1)(y
51
+ 60y
50
+ ··· + 2y 1)
c
9
625(25y
3
26y
2
+ 9y 1)(25y
51
+ 739y
50
+ ··· 637947y 57121)
16