11a
304
(K11a
304
)
A knot diagram
1
Linearized knot diagam
5 10 1 7 2 9 4 11 6 3 8
Solving Sequence
2,10
3
6,11
5 1 9 7 4 8
c
2
c
10
c
5
c
1
c
9
c
6
c
4
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, 3859u
17
+ 8014u
16
+ ··· + 13433a 31560, u
18
9u
16
+ ··· + 2u 1i
I
u
2
= h−6.09740 × 10
97
u
47
+ 2.58938 × 10
98
u
46
+ ··· + 2.24272 × 10
98
b 1.38856 × 10
100
,
1.06648 × 10
100
u
47
4.25205 × 10
100
u
46
+ ··· + 7.15429 × 10
100
a + 2.73856 × 10
102
,
u
48
3u
47
+ ··· + 2258u + 319i
I
u
3
= hb + u, u
7
u
6
4u
5
+ 3u
4
+ 5u
3
4u
2
+ a + 1, u
8
4u
6
+ 6u
4
u
3
3u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hb+u, 3859u
17
+8014u
16
+· · ·+13433a31560, u
18
9u
16
+· · ·+2u1i
(i) Arc colorings
a
2
=
1
0
a
10
=
0
u
a
3
=
1
u
2
a
6
=
0.287278u
17
0.596590u
16
+ ··· + 2.96665u + 2.34944
u
a
11
=
u
u
3
+ u
a
5
=
0.287278u
17
0.596590u
16
+ ··· + 1.96665u + 2.34944
u
a
1
=
0.596590u
17
+ 0.330157u
16
+ ··· + 1.77488u + 1.28728
u
2
a
9
=
0.581553u
17
0.0745180u
16
+ ··· 7.40646u + 0.419489
0.330157u
17
0.592868u
16
+ ··· + 2.48046u 0.596590
a
7
=
1.20948u
17
+ 0.0859823u
16
+ ··· + 3.46899u + 0.746743
0.0831534u
17
0.239857u
16
+ ··· 1.74987u + 0.522073
a
4
=
0.722102u
17
+ 0.840095u
16
+ ··· 0.833246u + 1.68138
0.833991u
17
+ 1.04913u
16
+ ··· 2.01772u + 0.712425
a
8
=
0.661877u
17
+ 0.0748158u
16
+ ··· 7.07243u + 0.584828
0.186407u
17
0.456041u
16
+ ··· + 1.92809u 0.612596
a
8
=
0.661877u
17
+ 0.0748158u
16
+ ··· 7.07243u + 0.584828
0.186407u
17
0.456041u
16
+ ··· + 1.92809u 0.612596
(ii) Obstruction class = 1
(iii) Cusp Shapes =
37965
13433
u
17
30147
13433
u
16
+ ···
4675
1919
u
54291
13433
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
10
u
18
9u
16
+ ··· + 2u 1
c
3
u
18
17u
17
+ ··· + 640u 64
c
4
, c
7
, c
8
c
11
u
18
u
17
+ ··· + 4u + 1
c
6
, c
9
u
18
+ 11u
17
+ ··· + 208u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
y
18
18y
17
+ ··· + 6y + 1
c
3
y
18
3y
17
+ ··· 24576y + 4096
c
4
, c
7
, c
8
c
11
y
18
+ 13y
17
+ ··· 14y + 1
c
6
, c
9
y
18
+ 11y
17
+ ··· 12160y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.408078 + 0.786624I
a = 0.191327 + 1.032300I
b = 0.408078 0.786624I
6.34892 + 0.61291I 0.81864 + 1.96169I
u = 0.408078 0.786624I
a = 0.191327 1.032300I
b = 0.408078 + 0.786624I
6.34892 0.61291I 0.81864 1.96169I
u = 1.181090 + 0.239212I
a = 0.11707 + 1.45553I
b = 1.181090 0.239212I
5.93754 0.90931I 12.67105 + 3.59251I
u = 1.181090 0.239212I
a = 0.11707 1.45553I
b = 1.181090 + 0.239212I
5.93754 + 0.90931I 12.67105 3.59251I
u = 0.108330 + 0.747006I
a = 1.32407 + 0.67886I
b = 0.108330 0.747006I
5.38862 + 5.69558I 1.81453 3.55021I
u = 0.108330 0.747006I
a = 1.32407 0.67886I
b = 0.108330 + 0.747006I
5.38862 5.69558I 1.81453 + 3.55021I
u = 1.275010 + 0.262336I
a = 1.175550 + 0.241403I
b = 1.275010 0.262336I
0.95391 + 8.87623I 7.74572 6.85139I
u = 1.275010 0.262336I
a = 1.175550 0.241403I
b = 1.275010 + 0.262336I
0.95391 8.87623I 7.74572 + 6.85139I
u = 1.33028
a = 0.683762
b = 1.33028
6.40721 14.9220
u = 1.41995 + 0.20994I
a = 0.613065 + 1.144820I
b = 1.41995 0.20994I
6.13065 4.90278I 7.01114 + 4.15155I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41995 0.20994I
a = 0.613065 1.144820I
b = 1.41995 + 0.20994I
6.13065 + 4.90278I 7.01114 4.15155I
u = 0.542099
a = 0.262417
b = 0.542099
0.811801 12.0990
u = 1.49966 + 0.40429I
a = 0.028686 + 0.907225I
b = 1.49966 0.40429I
10.72730 4.74355I 14.8235 + 1.3888I
u = 1.49966 0.40429I
a = 0.028686 0.907225I
b = 1.49966 + 0.40429I
10.72730 + 4.74355I 14.8235 1.3888I
u = 1.53397 + 0.54225I
a = 0.050667 + 1.000190I
b = 1.53397 0.54225I
3.9883 + 16.2483I 8.61000 8.11381I
u = 1.53397 0.54225I
a = 0.050667 1.000190I
b = 1.53397 + 0.54225I
3.9883 16.2483I 8.61000 + 8.11381I
u = 0.159971 + 0.264831I
a = 2.87602 + 0.51667I
b = 0.159971 0.264831I
0.39235 + 1.59654I 2.49522 4.52605I
u = 0.159971 0.264831I
a = 2.87602 0.51667I
b = 0.159971 + 0.264831I
0.39235 1.59654I 2.49522 + 4.52605I
6
II. I
u
2
= h−6.10 × 10
97
u
47
+ 2.59 × 10
98
u
46
+ · · · + 2.24 × 10
98
b 1.39 ×
10
100
, 1.07 × 10
100
u
47
4.25 × 10
100
u
46
+ · · · + 7.15 × 10
100
a + 2.74 ×
10
102
, u
48
3u
47
+ · · · + 2258u + 319i
(i) Arc colorings
a
2
=
1
0
a
10
=
0
u
a
3
=
1
u
2
a
6
=
0.149069u
47
+ 0.594336u
46
+ ··· 256.237u 38.2785
0.271875u
47
1.15457u
46
+ ··· + 396.158u + 61.9139
a
11
=
u
u
3
+ u
a
5
=
0.122806u
47
0.560233u
46
+ ··· + 139.921u + 23.6354
0.271875u
47
1.15457u
46
+ ··· + 396.158u + 61.9139
a
1
=
1.54072u
47
6.38173u
46
+ ··· + 2672.27u + 435.306
1.99109u
47
8.19373u
46
+ ··· + 3481.47u + 562.648
a
9
=
0.0375732u
47
+ 0.143876u
46
+ ··· 130.196u 23.4217
0.460900u
47
1.84389u
46
+ ··· + 889.590u + 143.667
a
7
=
0.00542028u
47
+ 0.0383142u
46
+ ··· + 63.9028u + 9.35070
0.0486115u
47
0.222442u
46
+ ··· + 91.9873u + 18.1913
a
4
=
0.185270u
47
0.834683u
46
+ ··· + 187.771u + 28.3446
0.335022u
47
1.41596u
46
+ ··· + 528.630u + 82.1633
a
8
=
0.456200u
47
1.83795u
46
+ ··· + 821.370u + 131.984
0.476207u
47
1.90758u
46
+ ··· + 910.659u + 147.924
a
8
=
0.456200u
47
1.83795u
46
+ ··· + 821.370u + 131.984
0.476207u
47
1.90758u
46
+ ··· + 910.659u + 147.924
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6.23467u
47
25.2293u
46
+ ··· + 11604.2u + 1881.95
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
10
u
48
3u
47
+ ··· + 2258u + 319
c
3
(u
24
+ 4u
23
+ ··· + 2u + 1)
2
c
4
, c
7
, c
8
c
11
u
48
5u
47
+ ··· + 314u + 61
c
6
, c
9
(u
24
4u
23
+ ··· 2u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
y
48
37y
47
+ ··· + 318056y + 101761
c
3
(y
24
+ 6y
23
+ ··· + 8y + 1)
2
c
4
, c
7
, c
8
c
11
y
48
+ 31y
47
+ ··· 55164y + 3721
c
6
, c
9
(y
24
+ 20y
23
+ ··· + 52y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.507410 + 0.882826I
a = 1.098430 + 0.558103I
b = 1.264200 0.100697I
4.43678 0.22592I 13.45627 + 0.I
u = 0.507410 0.882826I
a = 1.098430 0.558103I
b = 1.264200 + 0.100697I
4.43678 + 0.22592I 13.45627 + 0.I
u = 0.762695 + 0.579511I
a = 0.392365 0.571771I
b = 0.154819 + 0.470368I
1.82625 2.21677I 1.73188 + 4.68950I
u = 0.762695 0.579511I
a = 0.392365 + 0.571771I
b = 0.154819 0.470368I
1.82625 + 2.21677I 1.73188 4.68950I
u = 0.737778 + 0.756607I
a = 0.143305 0.121548I
b = 0.916292 + 0.212779I
0.282838 0.252163I 7.00000 + 0.I
u = 0.737778 0.756607I
a = 0.143305 + 0.121548I
b = 0.916292 0.212779I
0.282838 + 0.252163I 7.00000 + 0.I
u = 0.916292 + 0.212779I
a = 0.033385 + 0.208446I
b = 0.737778 + 0.756607I
0.282838 + 0.252163I 7.62766 0.43499I
u = 0.916292 0.212779I
a = 0.033385 0.208446I
b = 0.737778 0.756607I
0.282838 0.252163I 7.62766 + 0.43499I
u = 1.084950 + 0.073103I
a = 0.008039 0.977174I
b = 2.83805 + 2.46715I
1.83976 + 0.26235I 18.4351 + 36.8531I
u = 1.084950 0.073103I
a = 0.008039 + 0.977174I
b = 2.83805 2.46715I
1.83976 0.26235I 18.4351 36.8531I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.185015 + 0.891964I
a = 1.39762 0.46861I
b = 1.241010 + 0.316801I
3.16425 + 4.93690I 9.72258 5.53812I
u = 0.185015 0.891964I
a = 1.39762 + 0.46861I
b = 1.241010 0.316801I
3.16425 4.93690I 9.72258 + 5.53812I
u = 1.143710 + 0.210666I
a = 0.37949 1.52464I
b = 1.389740 + 0.219183I
6.06530 + 3.64576I 0
u = 1.143710 0.210666I
a = 0.37949 + 1.52464I
b = 1.389740 0.219183I
6.06530 3.64576I 0
u = 1.013570 + 0.603926I
a = 0.671512 + 0.079817I
b = 0.137025 0.636866I
4.61294 5.64930I 0
u = 1.013570 0.603926I
a = 0.671512 0.079817I
b = 0.137025 + 0.636866I
4.61294 + 5.64930I 0
u = 1.076670 + 0.546759I
a = 0.593477 + 0.736101I
b = 0.316671 0.434852I
0.782529 + 1.065850I 0
u = 1.076670 0.546759I
a = 0.593477 0.736101I
b = 0.316671 + 0.434852I
0.782529 1.065850I 0
u = 1.200180 + 0.290326I
a = 0.837459 0.455709I
b = 1.305520 + 0.094166I
2.69997 + 4.12763I 0
u = 1.200180 0.290326I
a = 0.837459 + 0.455709I
b = 1.305520 0.094166I
2.69997 4.12763I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.264200 + 0.100697I
a = 0.129257 + 0.980773I
b = 0.507410 0.882826I
4.43678 0.22592I 0
u = 1.264200 0.100697I
a = 0.129257 0.980773I
b = 0.507410 + 0.882826I
4.43678 + 0.22592I 0
u = 1.241010 + 0.316801I
a = 0.136900 1.039440I
b = 0.185015 + 0.891964I
3.16425 4.93690I 0
u = 1.241010 0.316801I
a = 0.136900 + 1.039440I
b = 0.185015 0.891964I
3.16425 + 4.93690I 0
u = 1.262020 + 0.321043I
a = 0.023468 + 0.958439I
b = 0.28931 1.41057I
1.74071 9.53525I 0
u = 1.262020 0.321043I
a = 0.023468 0.958439I
b = 0.28931 + 1.41057I
1.74071 + 9.53525I 0
u = 1.305520 + 0.094166I
a = 0.850020 0.294012I
b = 1.200180 + 0.290326I
2.69997 4.12763I 0
u = 1.305520 0.094166I
a = 0.850020 + 0.294012I
b = 1.200180 0.290326I
2.69997 + 4.12763I 0
u = 0.350000 + 0.566175I
a = 0.98088 + 1.39510I
b = 1.49434 + 0.04435I
0.47769 + 2.08395I 4.74669 3.16145I
u = 0.350000 0.566175I
a = 0.98088 1.39510I
b = 1.49434 0.04435I
0.47769 2.08395I 4.74669 + 3.16145I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.137025 + 0.636866I
a = 0.251867 + 1.198590I
b = 1.013570 0.603926I
4.61294 5.64930I 2.87192 + 2.20392I
u = 0.137025 0.636866I
a = 0.251867 1.198590I
b = 1.013570 + 0.603926I
4.61294 + 5.64930I 2.87192 2.20392I
u = 1.389740 + 0.219183I
a = 0.345996 1.251770I
b = 1.143710 + 0.210666I
6.06530 3.64576I 0
u = 1.389740 0.219183I
a = 0.345996 + 1.251770I
b = 1.143710 0.210666I
6.06530 + 3.64576I 0
u = 0.28931 + 1.41057I
a = 0.770694 + 0.397207I
b = 1.262020 0.321043I
1.74071 9.53525I 0
u = 0.28931 1.41057I
a = 0.770694 0.397207I
b = 1.262020 + 0.321043I
1.74071 + 9.53525I 0
u = 0.316671 + 0.434852I
a = 1.41976 1.57779I
b = 1.076670 0.546759I
0.782529 + 1.065850I 2.95105 0.35875I
u = 0.316671 0.434852I
a = 1.41976 + 1.57779I
b = 1.076670 + 0.546759I
0.782529 1.065850I 2.95105 + 0.35875I
u = 1.40310 + 0.41281I
a = 0.022975 1.042370I
b = 1.58930 + 0.62087I
8.17000 9.69978I 0
u = 1.40310 0.41281I
a = 0.022975 + 1.042370I
b = 1.58930 0.62087I
8.17000 + 9.69978I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.49434 + 0.04435I
a = 0.319282 0.688916I
b = 0.350000 + 0.566175I
0.47769 2.08395I 0
u = 1.49434 0.04435I
a = 0.319282 + 0.688916I
b = 0.350000 0.566175I
0.47769 + 2.08395I 0
u = 0.154819 + 0.470368I
a = 0.002200 1.341380I
b = 0.762695 + 0.579511I
1.82625 + 2.21677I 1.73188 4.68950I
u = 0.154819 0.470368I
a = 0.002200 + 1.341380I
b = 0.762695 0.579511I
1.82625 2.21677I 1.73188 + 4.68950I
u = 1.58930 + 0.62087I
a = 0.057376 0.891861I
b = 1.40310 + 0.41281I
8.17000 + 9.69978I 0
u = 1.58930 0.62087I
a = 0.057376 + 0.891861I
b = 1.40310 0.41281I
8.17000 9.69978I 0
u = 2.83805 + 2.46715I
a = 0.168774 0.226636I
b = 1.084950 + 0.073103I
1.83976 0.26235I 0
u = 2.83805 2.46715I
a = 0.168774 + 0.226636I
b = 1.084950 0.073103I
1.83976 + 0.26235I 0
14
III. I
u
3
=
hb+u, u
7
u
6
4u
5
+3u
4
+5u
3
4u
2
+a +1, u
8
4u
6
+6u
4
u
3
3u
2
+u +1i
(i) Arc colorings
a
2
=
1
0
a
10
=
0
u
a
3
=
1
u
2
a
6
=
u
7
+ u
6
+ 4u
5
3u
4
5u
3
+ 4u
2
1
u
a
11
=
u
u
3
+ u
a
5
=
u
7
+ u
6
+ 4u
5
3u
4
5u
3
+ 4u
2
u 1
u
a
1
=
u
7
3u
5
+ u
4
+ 3u
3
4u
2
+ 2
u
2
a
9
=
u
7
+ u
6
+ 4u
5
3u
4
5u
3
+ 5u
2
+ u 2
u
6
+ u
5
3u
4
2u
3
+ 3u
2
+ u 1
a
7
=
2u
7
+ 7u
5
8u
3
+ 3u
2
+ 2u 1
u
4
+ u
3
u
2
u
a
4
=
u
6
+ u
5
2u
4
u
3
+ 2u
2
2u 1
u
7
+ u
6
3u
5
3u
4
+ 3u
3
+ 3u
2
2u 1
a
8
=
u
7
+ u
6
+ 4u
5
4u
4
5u
3
+ 7u
2
+ u 3
u
5
2u
3
+ u
a
8
=
u
7
+ u
6
+ 4u
5
4u
4
5u
3
+ 7u
2
+ u 3
u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
7
+ u
6
22u
5
2u
4
+ 23u
3
5u
2
u 9
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
8
4u
6
+ 6u
4
+ u
3
3u
2
u + 1
c
2
, c
5
u
8
4u
6
+ 6u
4
u
3
3u
2
+ u + 1
c
3
u
8
2u
6
u
5
+ 16u
4
+ 32u
3
+ 24u
2
+ 8u + 1
c
4
, c
8
u
8
u
7
+ 4u
6
3u
5
+ 6u
4
3u
3
+ 3u
2
u + 1
c
6
u
8
+ 2u
7
+ 5u
6
+ 2u
5
+ 4u
4
2u
3
+ u
2
u + 1
c
7
, c
11
u
8
+ u
7
+ 4u
6
+ 3u
5
+ 6u
4
+ 3u
3
+ 3u
2
+ u + 1
c
9
u
8
2u
7
+ 5u
6
2u
5
+ 4u
4
+ 2u
3
+ u
2
+ u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
y
8
8y
7
+ 28y
6
54y
5
+ 62y
4
45y
3
+ 23y
2
7y + 1
c
3
y
8
4y
7
+ 36y
6
17y
5
+ 226y
4
244y
3
+ 96y
2
16y + 1
c
4
, c
7
, c
8
c
11
y
8
+ 7y
7
+ 22y
6
+ 39y
5
+ 42y
4
+ 29y
3
+ 15y
2
+ 5y + 1
c
6
, c
9
y
8
+ 6y
7
+ 25y
6
+ 46y
5
+ 40y
4
+ 18y
3
+ 5y
2
+ y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.637594 + 0.491904I
a = 0.269821 0.686725I
b = 0.637594 0.491904I
3.58036 6.89137I 7.40021 + 6.36507I
u = 0.637594 0.491904I
a = 0.269821 + 0.686725I
b = 0.637594 + 0.491904I
3.58036 + 6.89137I 7.40021 6.36507I
u = 1.350130 + 0.230207I
a = 0.520365 + 1.298460I
b = 1.350130 0.230207I
7.12528 4.91384I 15.9725 + 5.8373I
u = 1.350130 0.230207I
a = 0.520365 1.298460I
b = 1.350130 + 0.230207I
7.12528 + 4.91384I 15.9725 5.8373I
u = 0.603955 + 0.161841I
a = 0.880661 0.975730I
b = 0.603955 0.161841I
1.17049 1.46276I 13.60538 + 3.21811I
u = 0.603955 0.161841I
a = 0.880661 + 0.975730I
b = 0.603955 + 0.161841I
1.17049 + 1.46276I 13.60538 3.21811I
u = 1.38377 + 0.43339I
a = 0.130117 + 0.725566I
b = 1.38377 0.43339I
1.86433 + 0.65741I 7.52191 0.35368I
u = 1.38377 0.43339I
a = 0.130117 0.725566I
b = 1.38377 + 0.43339I
1.86433 0.65741I 7.52191 + 0.35368I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
8
4u
6
+ 6u
4
+ u
3
3u
2
u + 1)(u
18
9u
16
+ ··· + 2u 1)
· (u
48
3u
47
+ ··· + 2258u + 319)
c
2
, c
5
(u
8
4u
6
+ 6u
4
u
3
3u
2
+ u + 1)(u
18
9u
16
+ ··· + 2u 1)
· (u
48
3u
47
+ ··· + 2258u + 319)
c
3
(u
8
2u
6
u
5
+ 16u
4
+ 32u
3
+ 24u
2
+ 8u + 1)
· (u
18
17u
17
+ ··· + 640u 64)(u
24
+ 4u
23
+ ··· + 2u + 1)
2
c
4
, c
8
(u
8
u
7
+ ··· u + 1)(u
18
u
17
+ ··· + 4u + 1)
· (u
48
5u
47
+ ··· + 314u + 61)
c
6
(u
8
+ 2u
7
+ 5u
6
+ 2u
5
+ 4u
4
2u
3
+ u
2
u + 1)
· (u
18
+ 11u
17
+ ··· + 208u + 16)(u
24
4u
23
+ ··· 2u + 1)
2
c
7
, c
11
(u
8
+ u
7
+ ··· + u + 1)(u
18
u
17
+ ··· + 4u + 1)
· (u
48
5u
47
+ ··· + 314u + 61)
c
9
(u
8
2u
7
+ 5u
6
2u
5
+ 4u
4
+ 2u
3
+ u
2
+ u + 1)
· (u
18
+ 11u
17
+ ··· + 208u + 16)(u
24
4u
23
+ ··· 2u + 1)
2
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
(y
8
8y
7
+ 28y
6
54y
5
+ 62y
4
45y
3
+ 23y
2
7y + 1)
· (y
18
18y
17
+ ··· + 6y + 1)(y
48
37y
47
+ ··· + 318056y + 101761)
c
3
(y
8
4y
7
+ 36y
6
17y
5
+ 226y
4
244y
3
+ 96y
2
16y + 1)
· (y
18
3y
17
+ ··· 24576y + 4096)(y
24
+ 6y
23
+ ··· + 8y + 1)
2
c
4
, c
7
, c
8
c
11
(y
8
+ 7y
7
+ 22y
6
+ 39y
5
+ 42y
4
+ 29y
3
+ 15y
2
+ 5y + 1)
· (y
18
+ 13y
17
+ ··· 14y + 1)(y
48
+ 31y
47
+ ··· 55164y + 3721)
c
6
, c
9
(y
8
+ 6y
7
+ 25y
6
+ 46y
5
+ 40y
4
+ 18y
3
+ 5y
2
+ y + 1)
· (y
18
+ 11y
17
+ ··· 12160y + 256)(y
24
+ 20y
23
+ ··· + 52y + 1)
2
20