11a
305
(K11a
305
)
A knot diagram
1
Linearized knot diagam
10 9 1 8 3 2 11 5 6 7 4
Solving Sequence
4,8
5
9,11
1 3 6 2 7 10
c
4
c
8
c
11
c
3
c
5
c
2
c
7
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h128458353823909u
26
+ 129748020078821u
25
+ ··· + 71455439122482b 307532868153053,
a 1, u
27
15u
25
+ ··· + 8u + 1i
I
u
2
= h6.23874 × 10
124
u
53
+ 1.39776 × 10
125
u
52
+ ··· + 4.41978 × 10
127
b + 4.69540 × 10
127
,
5.28258 × 10
127
u
53
1.64275 × 10
127
u
52
+ ··· + 8.57438 × 10
129
a + 7.90543 × 10
128
,
2u
54
3u
53
+ ··· + 95u 97i
I
u
3
= h2u
7
3u
6
5u
5
+ 6u
4
+ 10u
3
12u
2
+ b u + 4, a + 1, u
8
u
7
3u
6
+ 2u
5
+ 6u
4
4u
3
3u
2
+ 2u + 1i
I
u
4
= hu
2
+ b, a + 1, u
3
u 1i
I
u
5
= hb + 1, a 2, 2u 1i
I
u
6
= hb + 1, 2a 1, u + 1i
I
u
7
= hb + 1, a + 1, u + 1i
* 7 irreducible components of dim
C
= 0, with total 95 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.28 × 10
14
u
26
+ 1.30 × 10
14
u
25
+ · · · + 7.15 × 10
13
b 3.08 ×
10
14
, a 1, u
27
15u
25
+ · · · + 8u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
1
1.79774u
26
1.81579u
25
+ ··· + 35.4655u + 4.30384
a
1
=
1.79774u
26
+ 1.81579u
25
+ ··· 35.4655u 3.30384
1.79774u
26
1.81579u
25
+ ··· + 35.4655u + 4.30384
a
3
=
2.79486u
26
+ 3.00477u
25
+ ··· 62.0548u 7.92538
0.997121u
26
1.18898u
25
+ ··· + 26.5893u + 4.62154
a
6
=
3.74472u
26
3.04658u
25
+ ··· + 45.3634u + 2.81681
0.625459u
26
+ 1.07598u
25
+ ··· 25.4593u 2.82772
a
2
=
1.08283u
26
+ 1.65073u
25
+ ··· 41.4105u 5.52428
1.60344u
26
1.67881u
25
+ ··· + 34.6892u + 5.66859
a
7
=
u
1.81579u
26
+ 1.36688u
25
+ ··· 17.6858u 1.79774
a
10
=
u
2
+ 1
0.430865u
26
0.712953u
25
+ ··· + 19.1414u + 2.48805
a
10
=
u
2
+ 1
0.430865u
26
0.712953u
25
+ ··· + 19.1414u + 2.48805
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
110984790327346
11909239853747
u
26
+
77302583361155
11909239853747
u
25
+ ···
911733716325243
11909239853747
u
123671657013453
11909239853747
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
27
+ 2u
26
+ ··· + 8u + 2
c
2
, c
6
u
27
+ 7u
25
+ ··· 3u + 1
c
3
, c
11
u
27
10u
26
+ ··· + 172u 16
c
4
, c
7
, c
8
c
10
u
27
15u
25
+ ··· + 8u + 1
c
9
u
27
+ 13u
26
+ ··· 28u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
27
4y
26
+ ··· + 84y 4
c
2
, c
6
y
27
+ 14y
26
+ ··· 15y 1
c
3
, c
11
y
27
+ 16y
26
+ ··· + 6320y 256
c
4
, c
7
, c
8
c
10
y
27
30y
26
+ ··· + 34y 1
c
9
y
27
3y
26
+ ··· + 56y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.106573 + 0.849360I
a = 1.00000
b = 0.489173 0.963829I
0.11341 + 6.75527I 1.42209 7.76802I
u = 0.106573 0.849360I
a = 1.00000
b = 0.489173 + 0.963829I
0.11341 6.75527I 1.42209 + 7.76802I
u = 0.159654 + 0.781613I
a = 1.00000
b = 0.591660 + 0.371074I
1.77335 + 2.61294I 2.81593 2.10661I
u = 0.159654 0.781613I
a = 1.00000
b = 0.591660 0.371074I
1.77335 2.61294I 2.81593 + 2.10661I
u = 0.784543
a = 1.00000
b = 0.832565
0.365696 11.8450
u = 0.779651
a = 1.00000
b = 0.197132
1.29249 7.75610
u = 1.221600 + 0.595583I
a = 1.00000
b = 0.114881 1.150240I
4.22227 + 1.28214I 0. 2.91907I
u = 1.221600 0.595583I
a = 1.00000
b = 0.114881 + 1.150240I
4.22227 1.28214I 0. + 2.91907I
u = 1.356240 + 0.153177I
a = 1.00000
b = 0.57541 1.70357I
11.55650 2.44905I 8.88456 + 3.60972I
u = 1.356240 0.153177I
a = 1.00000
b = 0.57541 + 1.70357I
11.55650 + 2.44905I 8.88456 3.60972I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.39961 + 0.22669I
a = 1.00000
b = 1.44138 0.06147I
6.25875 + 10.21720I 5.61375 6.77548I
u = 1.39961 0.22669I
a = 1.00000
b = 1.44138 + 0.06147I
6.25875 10.21720I 5.61375 + 6.77548I
u = 1.40289 + 0.20762I
a = 1.00000
b = 1.029610 + 0.112240I
7.68644 3.38302I 7.90859 + 3.21661I
u = 1.40289 0.20762I
a = 1.00000
b = 1.029610 0.112240I
7.68644 + 3.38302I 7.90859 3.21661I
u = 0.096377 + 0.573318I
a = 1.00000
b = 0.076636 + 0.947154I
2.31133 + 1.38881I 5.27810 4.63773I
u = 0.096377 0.573318I
a = 1.00000
b = 0.076636 0.947154I
2.31133 1.38881I 5.27810 + 4.63773I
u = 1.48387 + 0.14705I
a = 1.00000
b = 0.72466 + 1.31085I
10.94040 2.59348I 9.36617 + 2.06057I
u = 1.48387 0.14705I
a = 1.00000
b = 0.72466 1.31085I
10.94040 + 2.59348I 9.36617 2.06057I
u = 1.52352 + 0.28324I
a = 1.00000
b = 0.280011 + 1.186500I
10.59150 1.56799I 10.06893 + 0.I
u = 1.52352 0.28324I
a = 1.00000
b = 0.280011 1.186500I
10.59150 + 1.56799I 10.06893 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.371492
a = 1.00000
b = 0.808679
1.55906 7.62210
u = 1.60437 + 0.47781I
a = 1.00000
b = 0.59054 1.51467I
11.3568 + 17.2512I 6.49370 8.44917I
u = 1.60437 0.47781I
a = 1.00000
b = 0.59054 + 1.51467I
11.3568 17.2512I 6.49370 + 8.44917I
u = 1.61375 + 0.50385I
a = 1.00000
b = 0.47653 + 1.39767I
12.4277 8.7733I 10.26210 + 6.04290I
u = 1.61375 0.50385I
a = 1.00000
b = 0.47653 1.39767I
12.4277 + 8.7733I 10.26210 6.04290I
u = 0.197438 + 0.089181I
a = 1.00000
b = 0.668438 + 0.903987I
0.67003 + 2.58307I 5.46112 + 2.85660I
u = 0.197438 0.089181I
a = 1.00000
b = 0.668438 0.903987I
0.67003 2.58307I 5.46112 2.85660I
7
II. I
u
2
= h6.24 × 10
124
u
53
+ 1.40 × 10
125
u
52
+ · · · + 4.42 × 10
127
b + 4.70 ×
10
127
, 5.28 × 10
127
u
53
1.64 × 10
127
u
52
+ · · · + 8.57 × 10
129
a + 7.91 ×
10
128
, 2u
54
3u
53
+ · · · + 95u 97i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
0.00616088u
53
+ 0.00191588u
52
+ ··· 2.54802u 0.0921982
0.00141155u
53
0.00316251u
52
+ ··· + 0.798062u 1.06236
a
1
=
0.00474933u
53
+ 0.00507839u
52
+ ··· 3.34608u + 0.970161
0.00141155u
53
0.00316251u
52
+ ··· + 0.798062u 1.06236
a
3
=
0.00820072u
53
+ 0.0152695u
52
+ ··· 2.12375u + 1.68293
0.0310592u
53
+ 0.0117199u
52
+ ··· + 2.01862u 1.67137
a
6
=
0.0459316u
53
0.0258658u
52
+ ··· 2.27013u + 4.10710
0.0103985u
53
0.000118880u
52
+ ··· + 0.840301u 0.133245
a
2
=
0.00436349u
53
+ 0.0140384u
52
+ ··· 1.70376u + 1.04810
0.0229988u
53
+ 0.0141891u
52
+ ··· + 2.09429u 1.33244
a
7
=
0.0461208u
53
+ 0.0321142u
52
+ ··· 2.68247u 3.34457
0.00729829u
53
+ 0.00864020u
52
+ ··· + 1.09734u 1.10864
a
10
=
0.0553985u
53
+ 0.0605537u
52
+ ··· 2.42681u 3.14804
0.00141547u
53
+ 0.00304333u
52
+ ··· + 1.29536u 0.247003
a
10
=
0.0553985u
53
+ 0.0605537u
52
+ ··· 2.42681u 3.14804
0.00141547u
53
+ 0.00304333u
52
+ ··· + 1.29536u 0.247003
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0491216u
53
0.0253069u
52
+ ··· + 8.86509u 1.04494
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
2(2u
54
+ 15u
53
+ ··· + 95u + 8)
c
2
, c
6
u
54
+ 2u
53
+ ··· + 59u 58
c
3
, c
11
(u
27
+ 7u
26
+ ··· 9u + 1)
2
c
4
, c
7
, c
8
c
10
2(2u
54
3u
53
+ ··· + 95u 97)
c
9
4(2u
27
15u
26
+ ··· + 13u
2
1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
4(4y
54
45y
53
+ ··· 3041y + 64)
c
2
, c
6
y
54
2y
53
+ ··· + 49299y + 3364
c
3
, c
11
(y
27
+ 21y
26
+ ··· + 79y 1)
2
c
4
, c
7
, c
8
c
10
4(4y
54
169y
53
+ ··· 117277y + 9409)
c
9
16(4y
27
9y
26
+ ··· + 26y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.191553 + 1.007580I
a = 0.197325 1.352280I
b = 0.254804 1.313870I
4.62049 3.14366I 4.20111 + 7.48213I
u = 0.191553 1.007580I
a = 0.197325 + 1.352280I
b = 0.254804 + 1.313870I
4.62049 + 3.14366I 4.20111 7.48213I
u = 0.386921 + 0.863120I
a = 0.593875 + 1.093790I
b = 0.336359 + 1.256870I
2.31398 + 4.08168I 2.22183 6.73318I
u = 0.386921 0.863120I
a = 0.593875 1.093790I
b = 0.336359 1.256870I
2.31398 4.08168I 2.22183 + 6.73318I
u = 1.064480 + 0.283281I
a = 0.376709 + 0.499540I
b = 0.1247450 0.0513806I
2.28814 + 0.50538I 2.42708 2.42335I
u = 1.064480 0.283281I
a = 0.376709 0.499540I
b = 0.1247450 + 0.0513806I
2.28814 0.50538I 2.42708 + 2.42335I
u = 1.173860 + 0.089375I
a = 0.383376 + 0.706097I
b = 0.336359 1.256870I
2.31398 4.08168I 0. + 6.73318I
u = 1.173860 0.089375I
a = 0.383376 0.706097I
b = 0.336359 + 1.256870I
2.31398 + 4.08168I 0. 6.73318I
u = 0.776371 + 0.247739I
a = 0.815173 0.579218I
b = 0.614397
0.430797 5.42999 + 0.I
u = 0.776371 0.247739I
a = 0.815173 + 0.579218I
b = 0.614397
0.430797 5.42999 + 0.I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.238460 + 0.091746I
a = 0.24657 + 1.71220I
b = 0.030026 1.195930I
5.57978 + 0.76639I 0
u = 1.238460 0.091746I
a = 0.24657 1.71220I
b = 0.030026 + 1.195930I
5.57978 0.76639I 0
u = 1.24296
a = 1.09764
b = 1.76258
2.63016 3.15490
u = 1.145500 + 0.484216I
a = 0.315197 0.415169I
b = 0.680724 0.185869I
1.17342 7.19207I 0
u = 1.145500 0.484216I
a = 0.315197 + 0.415169I
b = 0.680724 + 0.185869I
1.17342 + 7.19207I 0
u = 0.670966 + 0.279530I
a = 0.565660 + 0.309098I
b = 0.773490 0.664465I
1.04925 2.68015I 5.53151 + 8.74674I
u = 0.670966 0.279530I
a = 0.565660 0.309098I
b = 0.773490 + 0.664465I
1.04925 + 2.68015I 5.53151 8.74674I
u = 1.280920 + 0.236843I
a = 1.127380 + 0.336604I
b = 0.866120 + 0.477522I
5.60462 + 2.74876I 0
u = 1.280920 0.236843I
a = 1.127380 0.336604I
b = 0.866120 0.477522I
5.60462 2.74876I 0
u = 0.259489 + 0.638464I
a = 0.96234 1.27613I
b = 0.1247450 0.0513806I
2.28814 + 0.50538I 2.42708 2.42335I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.259489 0.638464I
a = 0.96234 + 1.27613I
b = 0.1247450 + 0.0513806I
2.28814 0.50538I 2.42708 + 2.42335I
u = 0.567756 + 0.331092I
a = 2.53793 1.74586I
b = 0.166726 1.050750I
4.26736 + 0.63431I 12.1339 + 9.7135I
u = 0.567756 0.331092I
a = 2.53793 + 1.74586I
b = 0.166726 + 1.050750I
4.26736 0.63431I 12.1339 9.7135I
u = 0.160026 + 0.628199I
a = 1.16003 + 1.52796I
b = 0.680724 0.185869I
1.17342 7.19207I 0.11287 + 4.65345I
u = 0.160026 0.628199I
a = 1.16003 1.52796I
b = 0.680724 + 0.185869I
1.17342 + 7.19207I 0.11287 4.65345I
u = 1.36432
a = 0.911050
b = 1.76258
2.63016 0
u = 1.371770 + 0.220283I
a = 1.232130 + 0.224114I
b = 0.37076 1.49197I
11.82420 7.32230I 0
u = 1.371770 0.220283I
a = 1.232130 0.224114I
b = 0.37076 + 1.49197I
11.82420 + 7.32230I 0
u = 1.332520 + 0.426923I
a = 1.082420 + 0.112700I
b = 0.59674 + 1.64916I
8.39486 + 8.30805I 0
u = 1.332520 0.426923I
a = 1.082420 0.112700I
b = 0.59674 1.64916I
8.39486 8.30805I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.400330 + 0.060212I
a = 0.105658 0.724076I
b = 0.254804 + 1.313870I
4.62049 + 3.14366I 0
u = 1.400330 0.060212I
a = 0.105658 + 0.724076I
b = 0.254804 1.313870I
4.62049 3.14366I 0
u = 1.374310 + 0.307061I
a = 0.588248 0.864299I
b = 0.301099 + 1.258580I
4.62741 10.78550I 0
u = 1.374310 0.307061I
a = 0.588248 + 0.864299I
b = 0.301099 1.258580I
4.62741 + 10.78550I 0
u = 1.39386 + 0.25453I
a = 0.086561 + 0.330904I
b = 0.04157 1.44995I
7.17653 4.66079I 0
u = 1.39386 0.25453I
a = 0.086561 0.330904I
b = 0.04157 + 1.44995I
7.17653 + 4.66079I 0
u = 0.54304 + 1.36844I
a = 0.538172 + 0.790723I
b = 0.301099 + 1.258580I
4.62741 10.78550I 0
u = 0.54304 1.36844I
a = 0.538172 0.790723I
b = 0.301099 1.258580I
4.62741 + 10.78550I 0
u = 0.036428 + 0.483267I
a = 0.73990 + 2.82847I
b = 0.04157 + 1.44995I
7.17653 + 4.66079I 8.04120 5.42805I
u = 0.036428 0.483267I
a = 0.73990 2.82847I
b = 0.04157 1.44995I
7.17653 4.66079I 8.04120 + 5.42805I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.49047 + 0.31194I
a = 0.913945 + 0.095159I
b = 0.59674 1.64916I
8.39486 8.30805I 0
u = 1.49047 0.31194I
a = 0.913945 0.095159I
b = 0.59674 + 1.64916I
8.39486 + 8.30805I 0
u = 0.293137 + 0.365513I
a = 1.36135 + 0.74389I
b = 0.773490 + 0.664465I
1.04925 + 2.68015I 5.53151 8.74674I
u = 0.293137 0.365513I
a = 1.36135 0.74389I
b = 0.773490 0.664465I
1.04925 2.68015I 5.53151 + 8.74674I
u = 1.52380 + 0.16415I
a = 0.814414 0.243162I
b = 0.866120 + 0.477522I
5.60462 + 2.74876I 0
u = 1.52380 0.16415I
a = 0.814414 + 0.243162I
b = 0.866120 0.477522I
5.60462 2.74876I 0
u = 0.367419 + 0.090723I
a = 0.885070 + 0.465459I
b = 0.796175
1.55865 7.50405 + 0.I
u = 0.367419 0.090723I
a = 0.885070 0.465459I
b = 0.796175
1.55865 7.50405 + 0.I
u = 1.64083 + 0.57885I
a = 0.785614 + 0.142897I
b = 0.37076 + 1.49197I
11.82420 + 7.32230I 0
u = 1.64083 0.57885I
a = 0.785614 0.142897I
b = 0.37076 1.49197I
11.82420 7.32230I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 2.01897 + 0.15093I
a = 0.267457 0.183985I
b = 0.166726 + 1.050750I
4.26736 0.63431I 0
u = 2.01897 0.15093I
a = 0.267457 + 0.183985I
b = 0.166726 1.050750I
4.26736 + 0.63431I 0
u = 0.46246 + 2.09787I
a = 0.082399 0.572177I
b = 0.030026 1.195930I
5.57978 + 0.76639I 0
u = 0.46246 2.09787I
a = 0.082399 + 0.572177I
b = 0.030026 + 1.195930I
5.57978 0.76639I 0
16
III. I
u
3
= h2u
7
3u
6
+ · · · + b + 4, a + 1, u
8
u
7
+ · · · + 2u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
1
2u
7
+ 3u
6
+ 5u
5
6u
4
10u
3
+ 12u
2
+ u 4
a
1
=
2u
7
3u
6
5u
5
+ 6u
4
+ 10u
3
12u
2
u + 3
2u
7
+ 3u
6
+ 5u
5
6u
4
10u
3
+ 12u
2
+ u 4
a
3
=
u
7
u
6
2u
5
+ 2u
4
+ 3u
3
5u
2
+ u + 2
3u
7
+ 4u
6
+ 7u
5
8u
4
13u
3
+ 17u
2
5
a
6
=
u
u
7
2u
6
2u
5
+ 5u
4
+ 5u
3
10u
2
+ 4
a
2
=
0
3u
7
+ 5u
6
+ 6u
5
11u
4
12u
3
+ 22u
2
2u 7
a
7
=
u
u
7
u
6
2u
5
+ 2u
4
+ 4u
3
5u
2
+ u + 2
a
10
=
u
2
1
2u
7
+ 2u
6
+ 5u
5
4u
4
9u
3
+ 8u
2
+ u 3
a
10
=
u
2
1
2u
7
+ 2u
6
+ 5u
5
4u
4
9u
3
+ 8u
2
+ u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16u
7
28u
6
34u
5
+ 61u
4
+ 69u
3
119u
2
+ 4u + 48
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
8
+ u
7
+ 2u
5
+ 3u
4
+ 2u
3
+ 5u
2
+ 6u + 3
c
2
, c
6
u
8
+ u
7
+ u
6
+ 3u
5
+ 4u
4
+ 3u
3
+ 4u
2
+ u + 1
c
3
u
8
+ 2u
7
+ 6u
6
+ 6u
5
+ 8u
4
+ 3u
3
+ 3u
2
u + 1
c
4
, c
7
u
8
u
7
3u
6
+ 2u
5
+ 6u
4
4u
3
3u
2
+ 2u + 1
c
8
, c
10
u
8
+ u
7
3u
6
2u
5
+ 6u
4
+ 4u
3
3u
2
2u + 1
c
9
u
8
5u
7
+ 11u
6
11u
5
+ 4u
4
+ 2u
3
+ 1
c
11
u
8
2u
7
+ 6u
6
6u
5
+ 8u
4
3u
3
+ 3u
2
+ u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
8
y
7
+ 2y
6
+ 2y
5
5y
4
+ 2y
3
+ 19y
2
6y + 9
c
2
, c
6
y
8
+ y
7
+ 3y
6
+ y
5
+ 6y
4
+ 19y
3
+ 18y
2
+ 7y + 1
c
3
, c
11
y
8
+ 8y
7
+ 28y
6
+ 54y
5
+ 70y
4
+ 63y
3
+ 31y
2
+ 5y + 1
c
4
, c
7
, c
8
c
10
y
8
7y
7
+ 25y
6
54y
5
+ 76y
4
66y
3
+ 37y
2
10y + 1
c
9
y
8
3y
7
+ 19y
6
13y
5
+ 62y
4
+ 18y
3
+ 8y
2
+ 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.830521 + 0.472642I
a = 1.00000
b = 0.278585 0.369009I
2.51723 + 7.95538I 6.62650 7.10591I
u = 0.830521 0.472642I
a = 1.00000
b = 0.278585 + 0.369009I
2.51723 7.95538I 6.62650 + 7.10591I
u = 1.22650 + 0.71722I
a = 1.00000
b = 0.111561 1.113420I
4.68125 1.07313I 14.8263 3.4130I
u = 1.22650 0.71722I
a = 1.00000
b = 0.111561 + 1.113420I
4.68125 + 1.07313I 14.8263 + 3.4130I
u = 1.39864 + 0.40204I
a = 1.00000
b = 0.43221 + 1.63582I
9.60260 + 7.88243I 8.54857 6.07539I
u = 1.39864 0.40204I
a = 1.00000
b = 0.43221 1.63582I
9.60260 7.88243I 8.54857 + 6.07539I
u = 0.502656 + 0.059050I
a = 1.00000
b = 0.734811 0.874667I
0.35174 2.79718I 11.9986 + 8.3500I
u = 0.502656 0.059050I
a = 1.00000
b = 0.734811 + 0.874667I
0.35174 + 2.79718I 11.9986 8.3500I
20
IV. I
u
4
= hu
2
+ b, a + 1, u
3
u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
1
a
11
=
1
u
2
a
1
=
u
2
1
u
2
a
3
=
u + 1
u
2
u
a
6
=
u
u
a
2
=
0
u
a
7
=
u
1
a
10
=
u
2
1
u
2
+ u
a
10
=
u
2
1
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u 1)
3
c
2
, c
6
, c
11
u
3
2u
2
+ u 1
c
3
u
3
+ 2u
2
+ u + 1
c
4
, c
7
u
3
u 1
c
8
, c
10
u
3
u + 1
c
9
u
3
2u
2
+ 3u 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y 1)
3
c
2
, c
3
, c
6
c
11
y
3
2y
2
3y 1
c
4
, c
7
, c
8
c
10
y
3
2y
2
+ y 1
c
9
y
3
+ 2y
2
+ 5y 1
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.662359 + 0.562280I
a = 1.00000
b = 0.122561 + 0.744862I
3.28987 12.0000
u = 0.662359 0.562280I
a = 1.00000
b = 0.122561 0.744862I
3.28987 12.0000
u = 1.32472
a = 1.00000
b = 1.75488
3.28987 12.0000
24
V. I
u
5
= hb + 1, a 2, 2u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
0.5
a
5
=
1
0.25
a
9
=
0.5
0.375
a
11
=
2
1
a
1
=
3
1
a
3
=
4
1
a
6
=
1
0.25
a
2
=
3
1.75
a
7
=
2
1.5
a
10
=
0
0.5
a
10
=
0
0.5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14.0625
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
2(2u 3)
c
2
u 2
c
3
, c
6
, c
7
u + 1
c
4
2(2u 1)
c
5
u
c
8
, c
9
2(2u + 1)
c
10
, c
11
u 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
4(4y 9)
c
2
y 4
c
3
, c
6
, c
7
c
10
, c
11
y 1
c
4
, c
8
, c
9
4(4y 1)
c
5
y
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000
a = 2.00000
b = 1.00000
0 14.0620
28
VI. I
u
6
= hb + 1, 2a 1, u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
1
a
5
=
1
1
a
9
=
1
0
a
11
=
0.5
1
a
1
=
1.5
1
a
3
=
2.5
1
a
6
=
2.75
0.5
a
2
=
1.5
1
a
7
=
0.25
1.5
a
10
=
0.375
0.25
a
10
=
0.375
0.25
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14.0625
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
c
2
, c
3
, c
4
u + 1
c
5
2(2u 3)
c
6
u 2
c
7
2(2u 1)
c
8
, c
11
u 1
c
9
, c
10
2(2u + 1)
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
c
2
, c
3
, c
4
c
8
, c
11
y 1
c
5
4(4y 9)
c
6
y 4
c
7
, c
9
, c
10
4(4y 1)
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000
b = 1.00000
0 14.0620
32
VII. I
u
7
= hb + 1, a + 1, u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
1
a
5
=
1
1
a
9
=
1
0
a
11
=
1
1
a
1
=
0
1
a
3
=
1
1
a
6
=
1
1
a
2
=
0
1
a
7
=
1
0
a
10
=
0
1
a
10
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
c
2
, c
3
, c
4
c
6
, c
7
u + 1
c
8
, c
9
, c
10
c
11
u 1
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
c
2
, c
3
, c
4
c
6
, c
7
, c
8
c
9
, c
10
, c
11
y 1
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
36
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
4u
2
(u 1)
3
(2u 3)(u
8
+ u
7
+ 2u
5
+ 3u
4
+ 2u
3
+ 5u
2
+ 6u + 3)
· (u
27
+ 2u
26
+ ··· + 8u + 2)(2u
54
+ 15u
53
+ ··· + 95u + 8)
c
2
, c
6
(u 2)(u + 1)
2
(u
3
2u
2
+ u 1)
· (u
8
+ u
7
+ ··· + u + 1)(u
27
+ 7u
25
+ ··· 3u + 1)
· (u
54
+ 2u
53
+ ··· + 59u 58)
c
3
(u + 1)
3
(u
3
+ 2u
2
+ u + 1)
· (u
8
+ 2u
7
+ 6u
6
+ 6u
5
+ 8u
4
+ 3u
3
+ 3u
2
u + 1)
· (u
27
10u
26
+ ··· + 172u 16)(u
27
+ 7u
26
+ ··· 9u + 1)
2
c
4
, c
7
4(u + 1)
2
(2u 1)(u
3
u 1)
· (u
8
u
7
3u
6
+ 2u
5
+ 6u
4
4u
3
3u
2
+ 2u + 1)
· (u
27
15u
25
+ ··· + 8u + 1)(2u
54
3u
53
+ ··· + 95u 97)
c
8
, c
10
4(u 1)
2
(2u + 1)(u
3
u + 1)
· (u
8
+ u
7
3u
6
2u
5
+ 6u
4
+ 4u
3
3u
2
2u + 1)
· (u
27
15u
25
+ ··· + 8u + 1)(2u
54
3u
53
+ ··· + 95u 97)
c
9
16(u 1)(2u + 1)
2
(u
3
2u
2
+ 3u 1)
· (u
8
5u
7
+ ··· + 2u
3
+ 1)(u
27
+ 13u
26
+ ··· 28u 4)
· (2u
27
15u
26
+ ··· + 13u
2
1)
2
c
11
(u 1)
3
(u
3
2u
2
+ u 1)
· (u
8
2u
7
+ 6u
6
6u
5
+ 8u
4
3u
3
+ 3u
2
+ u + 1)
· (u
27
10u
26
+ ··· + 172u 16)(u
27
+ 7u
26
+ ··· 9u + 1)
2
37
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
16y
2
(y 1)
3
(4y 9)(y
8
y
7
+ ··· 6y + 9)
· (y
27
4y
26
+ ··· + 84y 4)(4y
54
45y
53
+ ··· 3041y + 64)
c
2
, c
6
(y 4)(y 1)
2
(y
3
2y
2
3y 1)
· (y
8
+ y
7
+ 3y
6
+ y
5
+ 6y
4
+ 19y
3
+ 18y
2
+ 7y + 1)
· (y
27
+ 14y
26
+ ··· 15y 1)(y
54
2y
53
+ ··· + 49299y + 3364)
c
3
, c
11
(y 1)
3
(y
3
2y
2
3y 1)
· (y
8
+ 8y
7
+ 28y
6
+ 54y
5
+ 70y
4
+ 63y
3
+ 31y
2
+ 5y + 1)
· (y
27
+ 16y
26
+ ··· + 6320y 256)(y
27
+ 21y
26
+ ··· + 79y 1)
2
c
4
, c
7
, c
8
c
10
16(y 1)
2
(4y 1)(y
3
2y
2
+ y 1)
· (y
8
7y
7
+ 25y
6
54y
5
+ 76y
4
66y
3
+ 37y
2
10y + 1)
· (y
27
30y
26
+ ··· + 34y 1)(4y
54
169y
53
+ ··· 117277y + 9409)
c
9
256(y 1)(4y 1)
2
(y
3
+ 2y
2
+ 5y 1)
· (y
8
3y
7
+ 19y
6
13y
5
+ 62y
4
+ 18y
3
+ 8y
2
+ 1)
· (y
27
3y
26
+ ··· + 56y 16)(4y
27
9y
26
+ ··· + 26y 1)
2
38