11a
308
(K11a
308
)
A knot diagram
1
Linearized knot diagam
6 7 1 10 9 2 3 11 4 5 8
Solving Sequence
5,11
10 4 9 6 8 1 2 3 7
c
10
c
4
c
9
c
5
c
8
c
11
c
1
c
3
c
7
c
2
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
35
u
34
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 35 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
35
u
34
+ · · · 2u 1i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
a
6
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
4
+ u
2
+ 1
u
4
2u
2
a
1
=
u
8
3u
6
+ u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
2
=
u
20
+ 9u
18
+ ··· + u
2
+ 1
u
22
10u
20
+ ··· + 2u
4
+ u
2
a
3
=
u
19
+ 8u
17
24u
15
+ 30u
13
7u
11
10u
9
4u
7
+ 6u
5
+ 3u
3
+ 2u
u
19
9u
17
+ 32u
15
55u
13
+ 43u
11
9u
9
4u
5
u
3
+ u
a
7
=
u
34
15u
32
+ ··· u
2
+ 1
u
34
+ 16u
32
+ ··· 2u
4
3u
2
a
7
=
u
34
15u
32
+ ··· u
2
+ 1
u
34
+ 16u
32
+ ··· 2u
4
3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
33
+64u
31
452u
29
4u
28
+1840u
27
+52u
26
4728u
25
292u
24
+7904u
23
+916u
22
8628u
21
1732u
20
+6320u
19
+1988u
18
3804u
17
1360u
16
+2528u
15
+636u
14
1276u
13
364u
12
+276u
11
+144u
10
180u
9
+64u
8
+96u
7
24u
6
+36u
5
8u
4
+24u
3
20u
2
4u14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
35
u
34
+ ··· 2u 1
c
3
u
35
11u
34
+ ··· + 444u 113
c
4
, c
9
, c
10
u
35
u
34
+ ··· 2u 1
c
5
u
35
+ 3u
34
+ ··· + 54u + 9
c
8
, c
11
u
35
+ 5u
34
+ ··· + 4u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
y
35
41y
34
+ ··· + 6y 1
c
3
y
35
17y
34
+ ··· + 162106y 12769
c
4
, c
9
, c
10
y
35
33y
34
+ ··· + 6y 1
c
5
y
35
13y
34
+ ··· + 3618y 81
c
8
, c
11
y
35
+ 31y
34
+ ··· + 298y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.09220
7.72425 11.4230
u = 0.416127 + 0.687266I
11.53560 + 7.43008I 13.0479 5.8668I
u = 0.416127 0.687266I
11.53560 7.43008I 13.0479 + 5.8668I
u = 0.525382 + 0.592520I
11.96020 3.16210I 14.1562 0.1993I
u = 0.525382 0.592520I
11.96020 + 3.16210I 14.1562 + 0.1993I
u = 0.404028 + 0.654601I
3.38071 5.28518I 11.19312 + 7.66639I
u = 0.404028 0.654601I
3.38071 + 5.28518I 11.19312 7.66639I
u = 1.245760 + 0.112991I
2.03937 + 0.97518I 7.22361 + 0.37761I
u = 1.245760 0.112991I
2.03937 0.97518I 7.22361 0.37761I
u = 0.478538 + 0.569763I
3.71886 + 1.25391I 12.53849 1.04095I
u = 0.478538 0.569763I
3.71886 1.25391I 12.53849 + 1.04095I
u = 0.401418 + 0.595064I
1.30259 + 1.88118I 7.16532 3.48234I
u = 0.401418 0.595064I
1.30259 1.88118I 7.16532 + 3.48234I
u = 1.284920 + 0.176915I
2.74426 4.13151I 10.06219 + 7.59188I
u = 1.284920 0.176915I
2.74426 + 4.13151I 10.06219 7.59188I
u = 1.313190 + 0.225618I
9.81072 + 5.98333I 13.3282 5.5351I
u = 1.313190 0.225618I
9.81072 5.98333I 13.3282 + 5.5351I
u = 0.140885 + 0.636642I
5.27877 2.85435I 7.73114 + 4.21990I
u = 0.140885 0.636642I
5.27877 + 2.85435I 7.73114 4.21990I
u = 0.650180
7.56446 13.6890
u = 1.35428
5.67856 17.2470
u = 1.42496
13.8091 17.9870
u = 0.062444 + 0.564757I
1.40484 + 1.42814I 2.59292 5.83605I
u = 0.062444 0.564757I
1.40484 1.42814I 2.59292 + 5.83605I
u = 1.45233 + 0.22468I
7.26272 4.90638I 11.00863 + 2.94514I
u = 1.45233 0.22468I
7.26272 + 4.90638I 11.00863 2.94514I
u = 1.46000 + 0.24290I
9.38489 + 8.56887I 14.7051 7.1915I
u = 1.46000 0.24290I
9.38489 8.56887I 14.7051 + 7.1915I
u = 1.46668 + 0.20359I
9.96671 + 1.56878I 15.9909 + 0.I
u = 1.46668 0.20359I
9.96671 1.56878I 15.9909 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.46917 + 0.25360I
17.6166 10.8655I 16.5622 + 5.6789I
u = 1.46917 0.25360I
17.6166 + 10.8655I 16.5622 5.6789I
u = 1.48595 + 0.19714I
18.4666 + 0.3155I 17.6053 + 0.I
u = 1.48595 0.19714I
18.4666 0.3155I 17.6053 + 0.I
u = 0.321346
0.640564 15.8310
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
35
u
34
+ ··· 2u 1
c
3
u
35
11u
34
+ ··· + 444u 113
c
4
, c
9
, c
10
u
35
u
34
+ ··· 2u 1
c
5
u
35
+ 3u
34
+ ··· + 54u + 9
c
8
, c
11
u
35
+ 5u
34
+ ··· + 4u 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
y
35
41y
34
+ ··· + 6y 1
c
3
y
35
17y
34
+ ··· + 162106y 12769
c
4
, c
9
, c
10
y
35
33y
34
+ ··· + 6y 1
c
5
y
35
13y
34
+ ··· + 3618y 81
c
8
, c
11
y
35
+ 31y
34
+ ··· + 298y 1
8