11a
310
(K11a
310
)
A knot diagram
1
Linearized knot diagam
6 7 1 10 9 2 3 11 5 4 8
Solving Sequence
2,6
7 3 8 1 4 11 9 5 10
c
6
c
2
c
7
c
1
c
3
c
11
c
8
c
5
c
10
c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
30
u
29
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
30
u
29
+ · · · u 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
u
a
4
=
u
5
2u
3
u
u
5
3u
3
+ u
a
11
=
u
7
4u
5
+ 4u
3
u
9
5u
7
+ 7u
5
2u
3
+ u
a
9
=
u
12
+ 7u
10
17u
8
+ 16u
6
4u
4
u
2
+ 1
u
14
+ 8u
12
23u
10
+ 28u
8
14u
6
+ 4u
4
+ u
2
a
5
=
u
26
+ 15u
24
+ ··· u
2
+ 1
u
28
+ 16u
26
+ ··· 8u
6
u
4
a
10
=
u
19
10u
17
+ 38u
15
66u
13
+ 47u
11
4u
9
6u
7
+ 2u
5
+ 5u
3
u
19
11u
17
+ 48u
15
105u
13
+ 121u
11
73u
9
+ 20u
7
+ 6u
5
3u
3
+ u
a
10
=
u
19
10u
17
+ 38u
15
66u
13
+ 47u
11
4u
9
6u
7
+ 2u
5
+ 5u
3
u
19
11u
17
+ 48u
15
105u
13
+ 121u
11
73u
9
+ 20u
7
+ 6u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
28
+ 68u
26
500u
24
4u
23
+ 2080u
22
+ 56u
21
5384u
20
328u
19
+ 9008u
18
+ 1040u
17
9824u
16
1936u
15
+ 6800u
14
+ 2164u
13
2540u
12
1440u
11
52u
10
+ 508u
9
+ 512u
8
+ 4u
7
220u
6
64u
5
+ 12u
4
+ 20u
3
+ 8u
2
+ 4u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
30
u
29
+ ··· u 1
c
3
u
30
9u
29
+ ··· + 127u 41
c
4
, c
5
, c
9
c
10
u
30
+ u
29
+ ··· 3u 1
c
8
, c
11
u
30
+ 5u
29
+ ··· + 73u + 11
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
y
30
35y
29
+ ··· 5y + 1
c
3
y
30
11y
29
+ ··· 17441y + 1681
c
4
, c
5
, c
9
c
10
y
30
+ 33y
29
+ ··· 5y + 1
c
8
, c
11
y
30
+ 21y
29
+ ··· 3217y + 121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.735096 + 0.483437I
3.93491 + 7.78666I 6.52057 6.95091I
u = 0.735096 0.483437I
3.93491 7.78666I 6.52057 + 6.95091I
u = 0.823408 + 0.305892I
2.75760 + 1.21639I 8.64796 + 0.89072I
u = 0.823408 0.305892I
2.75760 1.21639I 8.64796 0.89072I
u = 0.745532 + 0.437435I
3.04287 5.13177I 10.41474 + 8.03667I
u = 0.745532 0.437435I
3.04287 + 5.13177I 10.41474 8.03667I
u = 0.764445 + 0.378232I
3.43946 + 1.21065I 12.14938 1.12081I
u = 0.764445 0.378232I
3.43946 1.21065I 12.14938 + 1.12081I
u = 0.452774 + 0.498752I
8.77358 + 1.74014I 1.26540 4.02754I
u = 0.452774 0.498752I
8.77358 1.74014I 1.26540 + 4.02754I
u = 0.122759 + 0.592008I
5.72920 4.13111I 2.75453 + 2.25855I
u = 0.122759 0.592008I
5.72920 + 4.13111I 2.75453 2.25855I
u = 0.446337 + 0.365752I
1.28799 1.35763I 1.87160 + 6.24969I
u = 0.446337 0.365752I
1.28799 + 1.35763I 1.87160 6.24969I
u = 0.054976 + 0.542370I
1.05109 + 1.79539I 6.43581 3.73700I
u = 0.054976 0.542370I
1.05109 1.79539I 6.43581 + 3.73700I
u = 1.50038 + 0.09278I
2.39020 3.71852I 5.27418 + 3.00848I
u = 1.50038 0.09278I
2.39020 + 3.71852I 5.27418 3.00848I
u = 1.53695 + 0.05480I
5.38754 + 2.62456I 7.08196 4.54676I
u = 1.53695 0.05480I
5.38754 2.62456I 7.08196 + 4.54676I
u = 0.457663
0.649936 15.7110
u = 1.56051
7.66915 13.9610
u = 1.61748 + 0.14016I
4.07324 10.12930I 8.75457 + 5.34263I
u = 1.61748 0.14016I
4.07324 + 10.12930I 8.75457 5.34263I
u = 1.62065 + 0.12523I
11.12620 + 7.24908I 12.24142 6.12618I
u = 1.62065 0.12523I
11.12620 7.24908I 12.24142 + 6.12618I
u = 1.62371 + 0.10809I
11.61880 3.05167I 13.64014 + 0.I
u = 1.62371 0.10809I
11.61880 + 3.05167I 13.64014 + 0.I
u = 1.63057 + 0.08388I
5.64869 + 0.25021I 10.11180 + 0.I
u = 1.63057 0.08388I
5.64869 0.25021I 10.11180 + 0.I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
30
u
29
+ ··· u 1
c
3
u
30
9u
29
+ ··· + 127u 41
c
4
, c
5
, c
9
c
10
u
30
+ u
29
+ ··· 3u 1
c
8
, c
11
u
30
+ 5u
29
+ ··· + 73u + 11
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
y
30
35y
29
+ ··· 5y + 1
c
3
y
30
11y
29
+ ··· 17441y + 1681
c
4
, c
5
, c
9
c
10
y
30
+ 33y
29
+ ··· 5y + 1
c
8
, c
11
y
30
+ 21y
29
+ ··· 3217y + 121
7