11a
312
(K11a
312
)
A knot diagram
1
Linearized knot diagam
7 9 1 11 10 2 4 3 5 6 8
Solving Sequence
5,9
10 6
3,11
2 4 8 1 7
c
9
c
5
c
10
c
2
c
4
c
8
c
11
c
7
c
1
, c
3
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= h73u
22
+ 403u
21
+ ··· + 4b 388, 13u
22
+ 105u
21
+ ··· + 8a 196, u
23
+ 7u
22
+ ··· + 20u 8i
I
u
2
= h−23118805228540u
7
a
5
+ 8120163058708u
7
a
4
+ ··· + 167668012322500a + 126864012582143,
2u
7
a
5
3u
7
a
4
+ ··· + 54a + 10, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
I
u
3
= hu
11
5u
9
+ 8u
7
+ u
6
2u
5
3u
4
4u
3
+ 2u
2
+ b + u,
u
10
u
9
+ 4u
8
+ 4u
7
4u
6
5u
5
3u
4
+ 4u
2
+ a + 3u + 2,
u
12
6u
10
+ 13u
8
+ u
7
10u
6
4u
5
2u
4
+ 5u
3
+ 4u
2
2u + 1i
* 3 irreducible components of dim
C
= 0, with total 83 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h73u
22
+ 403u
21
+ · · · + 4b 388, 13u
22
+ 105u
21
+ · · · + 8a
196, u
23
+ 7u
22
+ · · · + 20u 8i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
1.62500u
22
13.1250u
21
+ ··· 88.7500u + 24.5000
73
4
u
22
403
4
u
21
+ ··· 303u + 97
a
11
=
u
2
+ 1
u
4
2u
2
a
2
=
16.6250u
22
+ 87.6250u
21
+ ··· + 214.250u 72.5000
73
4
u
22
403
4
u
21
+ ··· 303u + 97
a
4
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
8
=
93
8
u
22
517
8
u
21
+ ···
769
4
u + 62
37
4
u
22
+
213
4
u
21
+ ··· +
389
2
u 59
a
1
=
13
8
u
22
67
8
u
21
+ ··· 21u + 8
19
2
u
22
55u
21
+ ···
383
2
u + 59
a
7
=
167
8
u
22
+
943
8
u
21
+ ··· +
1551
4
u 120
37
4
u
22
213
4
u
21
+ ···
387
2
u + 59
a
7
=
167
8
u
22
+
943
8
u
21
+ ··· +
1551
4
u 120
37
4
u
22
213
4
u
21
+ ···
387
2
u + 59
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
22
+17u
21
+24u
20
24u
19
51u
18
+70u
17
+81u
16
139u
15
+10u
14
+241u
13
226u
12
212u
11
+ 397u
10
84u
9
335u
8
+ 295u
7
62u
6
302u
5
+ 136u
4
15u
3
78u
2
+ 40u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
23
+ 10u
21
+ ··· + 3u 1
c
3
u
23
24u
22
+ ··· + 3840u 256
c
4
u
23
21u
22
+ ··· 11268u + 1192
c
5
, c
9
, c
10
u
23
+ 7u
22
+ ··· + 20u 8
c
7
, c
11
u
23
+ u
22
+ ··· + 3u
2
1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
23
+ 20y
22
+ ··· + 13y 1
c
3
y
23
4y
22
+ ··· + 131072y 65536
c
4
y
23
+ 9y
22
+ ··· + 19115664y 1420864
c
5
, c
9
, c
10
y
23
19y
22
+ ··· + 144y 64
c
7
, c
11
y
23
3y
22
+ ··· + 6y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.293135 + 1.025030I
a = 0.46656 1.57304I
b = 0.147192 1.229000I
7.64064 + 1.90172I 11.16155 1.95097I
u = 0.293135 1.025030I
a = 0.46656 + 1.57304I
b = 0.147192 + 1.229000I
7.64064 1.90172I 11.16155 + 1.95097I
u = 0.202954 + 0.883680I
a = 0.38232 + 2.26017I
b = 0.48719 + 1.49237I
9.7130 + 11.5082I 0.75618 6.89858I
u = 0.202954 0.883680I
a = 0.38232 2.26017I
b = 0.48719 1.49237I
9.7130 11.5082I 0.75618 + 6.89858I
u = 0.881214 + 0.717683I
a = 0.446178 1.010460I
b = 0.044762 1.270850I
5.82775 + 3.98753I 2.21274 8.17133I
u = 0.881214 0.717683I
a = 0.446178 + 1.010460I
b = 0.044762 + 1.270850I
5.82775 3.98753I 2.21274 + 8.17133I
u = 1.14836
a = 0.267977
b = 0.450637
1.73407 6.87040
u = 1.034490 + 0.522098I
a = 0.652102 + 0.902922I
b = 0.37473 + 1.45394I
7.16797 6.55570I 1.22391 + 3.26324I
u = 1.034490 0.522098I
a = 0.652102 0.902922I
b = 0.37473 1.45394I
7.16797 + 6.55570I 1.22391 3.26324I
u = 0.232269 + 0.616489I
a = 0.683421 0.586793I
b = 0.575175 + 0.039007I
0.29865 + 2.39912I 6.29196 4.13143I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.232269 0.616489I
a = 0.683421 + 0.586793I
b = 0.575175 0.039007I
0.29865 2.39912I 6.29196 + 4.13143I
u = 1.372390 + 0.114615I
a = 0.820986 + 0.214490I
b = 0.737153 + 0.407888I
6.36396 1.94185I 12.44424 + 2.77963I
u = 1.372390 0.114615I
a = 0.820986 0.214490I
b = 0.737153 0.407888I
6.36396 + 1.94185I 12.44424 2.77963I
u = 1.381230 + 0.237993I
a = 0.152679 0.704144I
b = 0.670861 0.027425I
4.83020 5.52175I 12.07498 + 4.89921I
u = 1.381230 0.237993I
a = 0.152679 + 0.704144I
b = 0.670861 + 0.027425I
4.83020 + 5.52175I 12.07498 4.89921I
u = 1.39795 + 0.37738I
a = 1.40129 + 1.12721I
b = 0.57325 + 1.48723I
4.6506 16.0409I 3.32343 + 8.47375I
u = 1.39795 0.37738I
a = 1.40129 1.12721I
b = 0.57325 1.48723I
4.6506 + 16.0409I 3.32343 8.47375I
u = 1.42052 + 0.45491I
a = 0.968130 0.943346I
b = 0.318171 1.163070I
2.31364 7.21005I 0.81443 + 11.11700I
u = 1.42052 0.45491I
a = 0.968130 + 0.943346I
b = 0.318171 + 1.163070I
2.31364 + 7.21005I 0.81443 11.11700I
u = 0.401495 + 0.274693I
a = 0.290970 + 0.483465I
b = 0.473749 + 0.279232I
0.892504 + 0.454173I 10.11280 4.18130I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.401495 0.274693I
a = 0.290970 0.483465I
b = 0.473749 0.279232I
0.892504 0.454173I 10.11280 + 4.18130I
u = 1.54765 + 0.11437I
a = 0.389379 + 0.033075I
b = 0.276976 1.131580I
2.45199 6.58203I 4.53835 + 6.99896I
u = 1.54765 0.11437I
a = 0.389379 0.033075I
b = 0.276976 + 1.131580I
2.45199 + 6.58203I 4.53835 6.99896I
7
II. I
u
2
= h−2.31 × 10
13
a
5
u
7
+ 8.12 × 10
12
a
4
u
7
+ · · · + 1.68 × 10
14
a + 1.27 ×
10
14
, 2u
7
a
5
3u
7
a
4
+ · · · + 54a + 10, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
a
0.392427a
5
u
7
0.137835a
4
u
7
+ ··· 2.84606a 2.15344
a
11
=
u
2
+ 1
u
4
2u
2
a
2
=
0.392427a
5
u
7
+ 0.137835a
4
u
7
+ ··· + 3.84606a + 2.15344
0.392427a
5
u
7
0.137835a
4
u
7
+ ··· 2.84606a 2.15344
a
4
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
8
=
0.619590a
5
u
7
+ 0.411741a
4
u
7
+ ··· + 5.96004a + 6.04257
0.461898a
5
u
7
+ 0.617791a
4
u
7
+ ··· 2.20681a 0.962589
a
1
=
0.863277a
5
u
7
+ 0.0511046a
4
u
7
+ ··· 1.95851a 2.40659
1.09603a
5
u
7
0.183794a
4
u
7
+ ··· 3.37057a 1.13036
a
7
=
0.257408a
5
u
7
0.257217a
4
u
7
+ ··· + 8.19095a + 7.33644
0.388740a
5
u
7
+ 0.461509a
4
u
7
+ ··· 4.45800a 2.53941
a
7
=
0.257408a
5
u
7
0.257217a
4
u
7
+ ··· + 8.19095a + 7.33644
0.388740a
5
u
7
+ 0.461509a
4
u
7
+ ··· 4.45800a 2.53941
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
17781823578608
58912383397937
u
7
a
5
+
890888304264
58912383397937
u
7
a
4
+ ···
483633451308792
58912383397937
a
241926483811578
58912383397937
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
48
+ u
47
+ ··· + 160u + 293
c
3
(u
3
+ u
2
1)
16
c
4
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
6
c
5
, c
9
, c
10
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
6
c
7
, c
11
u
48
+ 3u
47
+ ··· + 890u + 173
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
48
+ 39y
47
+ ··· 564720y + 85849
c
3
(y
3
y
2
+ 2y 1)
16
c
4
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
6
c
5
, c
9
, c
10
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
6
c
7
, c
11
y
48
13y
47
+ ··· 826008y + 29929
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.896822 0.641304I
b = 0.44089 1.82899I
5.00760 1.13123I 3.60429 + 0.51079I
u = 1.180120 + 0.268597I
a = 0.989164 0.528833I
b = 0.347952 + 0.310629I
0.87002 3.95936I 2.92498 + 3.49024I
u = 1.180120 + 0.268597I
a = 0.141663 + 0.835373I
b = 1.167430 0.563919I
0.87002 + 1.69689I 2.92498 2.46866I
u = 1.180120 + 0.268597I
a = 0.123278 + 1.382340I
b = 0.11559 + 1.41262I
5.00760 1.13123I 3.60429 + 0.51079I
u = 1.180120 + 0.268597I
a = 1.09571 1.53145I
b = 0.484357 1.213990I
0.87002 3.95936I 2.92498 + 3.49024I
u = 1.180120 + 0.268597I
a = 1.17316 + 1.78430I
b = 0.089556 + 1.152970I
0.87002 + 1.69689I 2.92498 2.46866I
u = 1.180120 0.268597I
a = 0.896822 + 0.641304I
b = 0.44089 + 1.82899I
5.00760 + 1.13123I 3.60429 0.51079I
u = 1.180120 0.268597I
a = 0.989164 + 0.528833I
b = 0.347952 0.310629I
0.87002 + 3.95936I 2.92498 3.49024I
u = 1.180120 0.268597I
a = 0.141663 0.835373I
b = 1.167430 + 0.563919I
0.87002 1.69689I 2.92498 + 2.46866I
u = 1.180120 0.268597I
a = 0.123278 1.382340I
b = 0.11559 1.41262I
5.00760 + 1.13123I 3.60429 0.51079I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 0.268597I
a = 1.09571 + 1.53145I
b = 0.484357 + 1.213990I
0.87002 + 3.95936I 2.92498 3.49024I
u = 1.180120 0.268597I
a = 1.17316 1.78430I
b = 0.089556 1.152970I
0.87002 1.69689I 2.92498 + 2.46866I
u = 0.108090 + 0.747508I
a = 1.012830 0.490873I
b = 1.294730 0.286176I
4.07009 5.40662I 0.21317 + 6.54740I
u = 0.108090 + 0.747508I
a = 0.192080 0.476649I
b = 0.465784 0.043673I
4.07009 + 0.24963I 0.213168 + 0.588510I
u = 0.108090 + 0.747508I
a = 0.50426 2.37465I
b = 0.220687 1.217460I
4.07009 + 0.24963I 0.213168 + 0.588510I
u = 0.108090 + 0.747508I
a = 0.12907 2.65292I
b = 0.66006 1.66847I
8.20767 2.57849I 6.74243 + 3.56796I
u = 0.108090 + 0.747508I
a = 1.31751 + 2.32128I
b = 0.172710 + 1.289020I
8.20767 2.57849I 6.74243 + 3.56796I
u = 0.108090 + 0.747508I
a = 0.19648 + 3.09182I
b = 0.240367 + 1.260870I
4.07009 5.40662I 0.21317 + 6.54740I
u = 0.108090 0.747508I
a = 1.012830 + 0.490873I
b = 1.294730 + 0.286176I
4.07009 + 5.40662I 0.21317 6.54740I
u = 0.108090 0.747508I
a = 0.192080 + 0.476649I
b = 0.465784 + 0.043673I
4.07009 0.24963I 0.213168 0.588510I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.108090 0.747508I
a = 0.50426 + 2.37465I
b = 0.220687 + 1.217460I
4.07009 0.24963I 0.213168 0.588510I
u = 0.108090 0.747508I
a = 0.12907 + 2.65292I
b = 0.66006 + 1.66847I
8.20767 + 2.57849I 6.74243 3.56796I
u = 0.108090 0.747508I
a = 1.31751 2.32128I
b = 0.172710 1.289020I
8.20767 + 2.57849I 6.74243 3.56796I
u = 0.108090 0.747508I
a = 0.19648 3.09182I
b = 0.240367 1.260870I
4.07009 + 5.40662I 0.21317 6.54740I
u = 1.37100
a = 0.216638 + 0.976013I
b = 0.312893 1.010360I
0.454474 2.84453 + 0.I
u = 1.37100
a = 0.216638 0.976013I
b = 0.312893 + 1.010360I
0.454474 2.84453 + 0.I
u = 1.37100
a = 0.567976 + 0.778979I
b = 0.790704 + 0.425774I
4.59206 2.82812I 9.37379 + 2.97945I
u = 1.37100
a = 0.567976 0.778979I
b = 0.790704 0.425774I
4.59206 + 2.82812I 9.37379 2.97945I
u = 1.37100
a = 0.731511 + 0.214900I
b = 0.554508 + 1.009700I
4.59206 2.82812I 9.37379 + 2.97945I
u = 1.37100
a = 0.731511 0.214900I
b = 0.554508 1.009700I
4.59206 + 2.82812I 9.37379 2.97945I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.334530 + 0.318930I
a = 0.387884 0.883429I
b = 1.407320 0.123988I
0.46900 + 9.27166I 4.93820 8.27362I
u = 1.334530 + 0.318930I
a = 0.933242 0.982503I
b = 0.003311 1.250180I
0.46900 + 3.61542I 4.93820 2.31472I
u = 1.334530 + 0.318930I
a = 0.314651 0.006577I
b = 0.631559 0.239514I
0.46900 + 3.61542I 4.93820 2.31472I
u = 1.334530 + 0.318930I
a = 1.56880 1.06264I
b = 0.82210 1.57135I
3.66858 + 6.44354I 1.59106 5.29417I
u = 1.334530 + 0.318930I
a = 1.29077 + 1.62216I
b = 0.328612 + 1.331730I
0.46900 + 9.27166I 4.93820 8.27362I
u = 1.334530 + 0.318930I
a = 1.94541 + 0.73100I
b = 0.234132 + 1.197830I
3.66858 + 6.44354I 1.59106 5.29417I
u = 1.334530 0.318930I
a = 0.387884 + 0.883429I
b = 1.407320 + 0.123988I
0.46900 9.27166I 4.93820 + 8.27362I
u = 1.334530 0.318930I
a = 0.933242 + 0.982503I
b = 0.003311 + 1.250180I
0.46900 3.61542I 4.93820 + 2.31472I
u = 1.334530 0.318930I
a = 0.314651 + 0.006577I
b = 0.631559 + 0.239514I
0.46900 3.61542I 4.93820 + 2.31472I
u = 1.334530 0.318930I
a = 1.56880 + 1.06264I
b = 0.82210 + 1.57135I
3.66858 6.44354I 1.59106 + 5.29417I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.334530 0.318930I
a = 1.29077 1.62216I
b = 0.328612 1.331730I
0.46900 9.27166I 4.93820 + 8.27362I
u = 1.334530 0.318930I
a = 1.94541 0.73100I
b = 0.234132 1.197830I
3.66858 6.44354I 1.59106 + 5.29417I
u = 0.463640
a = 0.863122 + 0.658172I
b = 0.171893 1.389680I
5.20322 60.874953 + 0.10I
u = 0.463640
a = 0.863122 0.658172I
b = 0.171893 + 1.389680I
5.20322 60.874953 + 0.10I
u = 0.463640
a = 0.53791 + 1.70966I
b = 0.383023 + 0.964868I
1.06564 + 2.82812I 7.40422 2.97945I
u = 0.463640
a = 0.53791 1.70966I
b = 0.383023 0.964868I
1.06564 2.82812I 7.40422 + 2.97945I
u = 0.463640
a = 0.11364 + 2.25012I
b = 0.512781 0.176265I
1.06564 + 2.82812I 7.40422 2.97945I
u = 0.463640
a = 0.11364 2.25012I
b = 0.512781 + 0.176265I
1.06564 2.82812I 7.40422 + 2.97945I
15
III.
I
u
3
= hu
11
5u
9
+ · · · + b + u, u
10
u
9
+ · · · + a + 2, u
12
6u
10
+ · · · 2u + 1i
(i) Arc colorings
a
5
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
6
=
u
u
3
+ u
a
3
=
u
10
+ u
9
4u
8
4u
7
+ 4u
6
+ 5u
5
+ 3u
4
4u
2
3u 2
u
11
+ 5u
9
8u
7
u
6
+ 2u
5
+ 3u
4
+ 4u
3
2u
2
u
a
11
=
u
2
+ 1
u
4
2u
2
a
2
=
u
11
+ u
10
4u
9
4u
8
+ 4u
7
+ 5u
6
+ 3u
5
4u
3
2u
2
2u 2
u
11
+ 5u
9
8u
7
u
6
+ 2u
5
+ 3u
4
+ 4u
3
2u
2
u
a
4
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
11
5u
9
+ 9u
7
+ 2u
6
5u
5
6u
4
3u
3
+ 5u
2
+ 4u
u
10
+ 4u
8
4u
6
u
5
2u
4
+ 2u
3
+ 3u
2
a
1
=
u
9
+ u
8
4u
7
4u
6
+ 5u
5
+ 6u
4
+ u
3
3u
2
4u
u
10
+ 5u
8
u
7
8u
6
+ 2u
5
+ 3u
4
+ u
3
+ u
2
3u + 1
a
7
=
u
11
+ u
10
5u
9
4u
8
+ 9u
7
+ 6u
6
4u
5
4u
4
5u
3
+ 2u
2
+ 5u 1
u
10
+ 4u
8
4u
6
u
5
2u
4
+ u
3
+ 3u
2
+ u
a
7
=
u
11
+ u
10
5u
9
4u
8
+ 9u
7
+ 6u
6
4u
5
4u
4
5u
3
+ 2u
2
+ 5u 1
u
10
+ 4u
8
4u
6
u
5
2u
4
+ u
3
+ 3u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
11
u
10
u
9
+ 8u
8
8u
7
19u
6
+ 16u
5
+ 16u
4
+ 3u
3
16u + 1
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
12
+ 6u
10
u
9
+ 14u
8
4u
7
+ 17u
6
6u
5
+ 12u
4
3u
3
+ 5u
2
u + 1
c
2
, c
6
u
12
+ 6u
10
+ u
9
+ 14u
8
+ 4u
7
+ 17u
6
+ 6u
5
+ 12u
4
+ 3u
3
+ 5u
2
+ u + 1
c
3
u
12
+ 3u
11
+ 3u
10
+ u
9
+ 2u
8
+ 4u
7
+ 3u
6
+ 2u
5
+ 2u
4
u
3
2u
2
+ 1
c
4
u
12
+ 2u
10
+ 3u
9
+ 4u
8
4u
7
+ 12u
6
7u
5
+ 3u
4
4u
3
+ 4u
2
+ 2u + 1
c
5
u
12
6u
10
+ 13u
8
u
7
10u
6
+ 4u
5
2u
4
5u
3
+ 4u
2
+ 2u + 1
c
7
, c
11
u
12
u
11
u
10
+ u
9
+ u
8
u
7
u
5
+ 2u
4
+ 2u
3
+ 1
c
9
, c
10
u
12
6u
10
+ 13u
8
+ u
7
10u
6
4u
5
2u
4
+ 5u
3
+ 4u
2
2u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
12
+ 12y
11
+ ··· + 9y + 1
c
3
y
12
3y
11
+ 7y
10
7y
9
+ 6y
8
+ 6y
7
7y
6
+ 14y
5
3y
3
+ 8y
2
4y + 1
c
4
y
12
+ 4y
11
+ ··· + 4y + 1
c
5
, c
9
, c
10
y
12
12y
11
+ ··· + 4y + 1
c
7
, c
11
y
12
3y
11
+ 5y
10
5y
9
+ 5y
8
+ y
7
+ y
5
+ 10y
4
4y
3
+ 4y
2
+ 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.215104 + 0.798845I
a = 0.72776 1.83625I
b = 0.240699 1.306190I
6.79522 1.91915I 0.40771 + 1.45870I
u = 0.215104 0.798845I
a = 0.72776 + 1.83625I
b = 0.240699 + 1.306190I
6.79522 + 1.91915I 0.40771 1.45870I
u = 1.181970 + 0.217891I
a = 0.278563 0.993678I
b = 0.17391 1.59240I
4.12723 1.52744I 6.19652 + 4.95399I
u = 1.181970 0.217891I
a = 0.278563 + 0.993678I
b = 0.17391 + 1.59240I
4.12723 + 1.52744I 6.19652 4.95399I
u = 1.286840 + 0.093791I
a = 0.095508 + 1.343010I
b = 0.506197 0.617660I
1.54867 1.75409I 7.03852 + 3.77129I
u = 1.286840 0.093791I
a = 0.095508 1.343010I
b = 0.506197 + 0.617660I
1.54867 + 1.75409I 7.03852 3.77129I
u = 1.334400 + 0.365970I
a = 1.33435 0.96209I
b = 0.445009 1.143310I
1.99720 + 6.23322I 3.71112 3.63849I
u = 1.334400 0.365970I
a = 1.33435 + 0.96209I
b = 0.445009 + 1.143310I
1.99720 6.23322I 3.71112 + 3.63849I
u = 1.43060 + 0.17503I
a = 0.132739 0.441201I
b = 0.229430 0.594825I
3.51165 5.19940I 5.87830 + 4.31149I
u = 1.43060 0.17503I
a = 0.132739 + 0.441201I
b = 0.229430 + 0.594825I
3.51165 + 5.19940I 5.87830 4.31149I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.206431 + 0.331897I
a = 2.36526 1.65098I
b = 0.357408 0.662175I
2.01027 + 3.15177I 2.73217 5.71624I
u = 0.206431 0.331897I
a = 2.36526 + 1.65098I
b = 0.357408 + 0.662175I
2.01027 3.15177I 2.73217 + 5.71624I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
12
+ 6u
10
u
9
+ 14u
8
4u
7
+ 17u
6
6u
5
+ 12u
4
3u
3
+ 5u
2
u + 1)
· (u
23
+ 10u
21
+ ··· + 3u 1)(u
48
+ u
47
+ ··· + 160u + 293)
c
2
, c
6
(u
12
+ 6u
10
+ u
9
+ 14u
8
+ 4u
7
+ 17u
6
+ 6u
5
+ 12u
4
+ 3u
3
+ 5u
2
+ u + 1)
· (u
23
+ 10u
21
+ ··· + 3u 1)(u
48
+ u
47
+ ··· + 160u + 293)
c
3
(u
3
+ u
2
1)
16
· (u
12
+ 3u
11
+ 3u
10
+ u
9
+ 2u
8
+ 4u
7
+ 3u
6
+ 2u
5
+ 2u
4
u
3
2u
2
+ 1)
· (u
23
24u
22
+ ··· + 3840u 256)
c
4
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
6
· (u
12
+ 2u
10
+ 3u
9
+ 4u
8
4u
7
+ 12u
6
7u
5
+ 3u
4
4u
3
+ 4u
2
+ 2u + 1)
· (u
23
21u
22
+ ··· 11268u + 1192)
c
5
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
6
· (u
12
6u
10
+ 13u
8
u
7
10u
6
+ 4u
5
2u
4
5u
3
+ 4u
2
+ 2u + 1)
· (u
23
+ 7u
22
+ ··· + 20u 8)
c
7
, c
11
(u
12
u
11
u
10
+ u
9
+ u
8
u
7
u
5
+ 2u
4
+ 2u
3
+ 1)
· (u
23
+ u
22
+ ··· + 3u
2
1)(u
48
+ 3u
47
+ ··· + 890u + 173)
c
9
, c
10
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
6
· (u
12
6u
10
+ 13u
8
+ u
7
10u
6
4u
5
2u
4
+ 5u
3
+ 4u
2
2u + 1)
· (u
23
+ 7u
22
+ ··· + 20u 8)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
(y
12
+ 12y
11
+ ··· + 9y + 1)(y
23
+ 20y
22
+ ··· + 13y 1)
· (y
48
+ 39y
47
+ ··· 564720y + 85849)
c
3
(y
3
y
2
+ 2y 1)
16
· (y
12
3y
11
+ 7y
10
7y
9
+ 6y
8
+ 6y
7
7y
6
+ 14y
5
3y
3
+ 8y
2
4y + 1)
· (y
23
4y
22
+ ··· + 131072y 65536)
c
4
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
6
· (y
12
+ 4y
11
+ ··· + 4y + 1)(y
23
+ 9y
22
+ ··· + 1.91157 × 10
7
y 1420864)
c
5
, c
9
, c
10
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
6
· (y
12
12y
11
+ ··· + 4y + 1)(y
23
19y
22
+ ··· + 144y 64)
c
7
, c
11
(y
12
3y
11
+ 5y
10
5y
9
+ 5y
8
+ y
7
+ y
5
+ 10y
4
4y
3
+ 4y
2
+ 1)
· (y
23
3y
22
+ ··· + 6y 1)(y
48
13y
47
+ ··· 826008y + 29929)
22