11a
313
(K11a
313
)
A knot diagram
1
Linearized knot diagam
7 9 1 11 10 2 4 3 6 5 8
Solving Sequence
4,11 5,8
1 3 7 2 10 6 9
c
4
c
11
c
3
c
7
c
1
c
10
c
5
c
9
c
2
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−5u
17
33u
16
+ ··· + 4b 52, 13u
17
+ 81u
16
+ ··· + 8a + 96, u
18
+ 7u
17
+ ··· + 76u + 8i
I
u
2
= h−2a
5
u
4
+ 3a
4
u
4
+ ··· + 4a + 1, 3a
5
u
4
+ 2a
4
u
4
+ ··· 19a + 171, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
I
u
3
= h−u
9
6u
7
12u
5
9u
3
u
2
+ b 2u 1, u
9
u
8
+ 7u
7
6u
6
+ 17u
5
12u
4
+ 17u
3
8u
2
+ a + 6u,
u
10
+ 7u
8
+ 17u
6
+ 17u
4
+ u
3
+ 7u
2
+ 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 58 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5u
17
33u
16
+ · · · + 4b 52, 13u
17
+ 81u
16
+ · · · + 8a + 96, u
18
+
7u
17
+ · · · + 76u + 8i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
8
=
13
8
u
17
81
8
u
16
+ ···
427
4
u 12
5
4
u
17
+
33
4
u
16
+ ··· +
223
2
u + 13
a
1
=
5
8
u
17
35
8
u
16
+ ··· 100u 13
1
2
u
16
+
5
2
u
15
+ ··· +
71
2
u + 5
a
3
=
1
8
u
17
5
8
u
16
+ ···
5
4
u +
1
2
1
4
u
17
3
4
u
16
+ ··· + 4u + 1
a
7
=
3
8
u
17
15
8
u
16
+ ··· +
19
4
u + 1
5
4
u
17
+
33
4
u
16
+ ··· +
223
2
u + 13
a
2
=
1
8
u
17
+
5
8
u
16
+ ···
107
4
u
9
2
1
4
u
17
+
7
4
u
16
+ ··· + 10u + 1
a
10
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
9
=
u
3
2u
u
5
+ 3u
3
+ u
a
9
=
u
3
2u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
16
+ 6u
15
+ 28u
14
+ 92u
13
+ 249u
12
+ 554u
11
+ 1049u
10
+
1698u
9
+ 2364u
8
+ 2836u
7
+ 2904u
6
+ 2530u
5
+ 1829u
4
+ 1076u
3
+ 490u
2
+ 164u + 38
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
18
+ 10u
16
+ ··· 2u + 1
c
3
u
18
16u
17
+ ··· 336u + 32
c
4
, c
5
, c
9
c
10
u
18
7u
17
+ ··· 76u + 8
c
7
, c
11
u
18
+ u
17
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
18
+ 20y
17
+ ··· 10y + 1
c
3
y
18
2y
17
+ ··· + 1280y + 1024
c
4
, c
5
, c
9
c
10
y
18
+ 21y
17
+ ··· 80y + 64
c
7
, c
11
y
18
9y
17
+ ··· + 5y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.938094 + 0.127303I
a = 0.941408 0.790571I
b = 0.983772 + 0.621786I
6.07729 5.27732I 1.03667 + 5.17608I
u = 0.938094 0.127303I
a = 0.941408 + 0.790571I
b = 0.983772 0.621786I
6.07729 + 5.27732I 1.03667 5.17608I
u = 0.582885 + 1.040010I
a = 0.111385 + 1.230910I
b = 1.21523 0.83332I
9.66105 10.31280I 2.35535 + 7.07108I
u = 0.582885 1.040010I
a = 0.111385 1.230910I
b = 1.21523 + 0.83332I
9.66105 + 10.31280I 2.35535 7.07108I
u = 0.778632 + 0.958835I
a = 0.617064 + 0.421015I
b = 0.884150 + 0.263847I
8.45479 0.42847I 5.71443 0.57034I
u = 0.778632 0.958835I
a = 0.617064 0.421015I
b = 0.884150 0.263847I
8.45479 + 0.42847I 5.71443 + 0.57034I
u = 0.355230 + 0.629435I
a = 0.238746 1.335150I
b = 0.755577 + 0.624559I
0.34160 2.17443I 5.24199 + 4.45398I
u = 0.355230 0.629435I
a = 0.238746 + 1.335150I
b = 0.755577 0.624559I
0.34160 + 2.17443I 5.24199 4.45398I
u = 0.018715 + 1.284460I
a = 0.361169 + 0.099115I
b = 0.134069 0.462052I
3.71490 1.64606I 3.60086 + 4.30018I
u = 0.018715 1.284460I
a = 0.361169 0.099115I
b = 0.134069 + 0.462052I
3.71490 + 1.64606I 3.60086 4.30018I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.393761 + 0.215364I
a = 1.053940 0.745188I
b = 0.254512 + 0.520406I
0.864807 0.492874I 9.89914 + 4.36324I
u = 0.393761 0.215364I
a = 1.053940 + 0.745188I
b = 0.254512 0.520406I
0.864807 + 0.492874I 9.89914 4.36324I
u = 0.09260 + 1.57781I
a = 0.470683 + 0.745843I
b = 1.133220 0.811713I
7.84988 3.77391I 4.41683 + 0.84733I
u = 0.09260 1.57781I
a = 0.470683 0.745843I
b = 1.133220 + 0.811713I
7.84988 + 3.77391I 4.41683 0.84733I
u = 0.16290 + 1.73082I
a = 0.468027 0.863900I
b = 1.41901 + 0.95080I
19.2814 13.3553I 3.21813 + 6.04416I
u = 0.16290 1.73082I
a = 0.468027 + 0.863900I
b = 1.41901 0.95080I
19.2814 + 13.3553I 3.21813 6.04416I
u = 0.21462 + 1.75897I
a = 0.006873 0.548217I
b = 0.962821 + 0.129746I
17.8610 4.5054I 5.83423 + 2.80770I
u = 0.21462 1.75897I
a = 0.006873 + 0.548217I
b = 0.962821 0.129746I
17.8610 + 4.5054I 5.83423 2.80770I
6
II. I
u
2
= h−2a
5
u
4
+ 3a
4
u
4
+ · · · + 4a + 1, 3a
5
u
4
+ 2a
4
u
4
+ · · · 19a +
171, u
5
u
4
+ 4u
3
3u
2
+ 3u 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
8
=
a
2a
5
u
4
3a
4
u
4
+ ··· 4a 1
a
1
=
a
2
u
a
5
u
4
2u
4
a
2
+ ··· 4a
2
a
a
3
=
a
4
u
4
2u
4
a
2
+ ··· + a + 4
a
4
u
4
4u
4
a
2
+ ··· 2a
2
2a
a
7
=
2a
5
u
4
3a
4
u
4
+ ··· 3a 1
2a
5
u
4
3a
4
u
4
+ ··· 4a 1
a
2
=
2a
4
u
4
u
4
a
3
+ ··· + 2a 2
a
4
u
4
u
4
a
3
+ ··· + 3a 2
a
10
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
9
=
u
3
2u
u
4
u
3
+ 3u
2
2u + 1
a
9
=
u
3
2u
u
4
u
3
+ 3u
2
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
5
u
4
+ 16a
4
u
3
16a
4
u
2
8a
3
u
3
8u
4
a
2
+ 24a
4
u + 4a
3
u
2
+
28u
3
a
2
8a
4
32a
2
u
2
+ 4u
4
+ 44a
2
u + 4u
3
16a
2
+ 8au + 16u
2
4a + 4u + 6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
30
+ u
29
+ ··· + 312u + 43
c
3
(u
3
+ u
2
1)
10
c
4
, c
5
, c
9
c
10
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
6
c
7
, c
11
u
30
+ 3u
29
+ ··· + 54u + 77
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
30
+ 27y
29
+ ··· 46776y + 1849
c
3
(y
3
y
2
+ 2y 1)
10
c
4
, c
5
, c
9
c
10
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
6
c
7
, c
11
y
30
9y
29
+ ··· 103632y + 5929
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.233677 + 0.885557I
a = 0.225781 0.945350I
b = 0.711989 0.202631I
3.73048 0.61415I 1.37593 1.24344I
u = 0.233677 + 0.885557I
a = 0.437610 1.062670I
b = 1.42316 + 0.86494I
3.73048 + 5.04209I 1.37593 7.20234I
u = 0.233677 + 0.885557I
a = 0.412268 + 0.695214I
b = 0.784401 0.420848I
3.73048 0.61415I 1.37593 1.24344I
u = 0.233677 + 0.885557I
a = 0.022978 + 0.780283I
b = 1.06610 1.51970I
7.86806 + 2.21397I 7.90519 4.22289I
u = 0.233677 + 0.885557I
a = 0.51667 + 1.74342I
b = 0.838791 0.635849I
3.73048 + 5.04209I 1.37593 7.20234I
u = 0.233677 + 0.885557I
a = 1.90138 + 0.70215I
b = 0.696354 + 0.161986I
7.86806 + 2.21397I 7.90519 4.22289I
u = 0.233677 0.885557I
a = 0.225781 + 0.945350I
b = 0.711989 + 0.202631I
3.73048 + 0.61415I 1.37593 + 1.24344I
u = 0.233677 0.885557I
a = 0.437610 + 1.062670I
b = 1.42316 0.86494I
3.73048 5.04209I 1.37593 + 7.20234I
u = 0.233677 0.885557I
a = 0.412268 0.695214I
b = 0.784401 + 0.420848I
3.73048 + 0.61415I 1.37593 + 1.24344I
u = 0.233677 0.885557I
a = 0.022978 0.780283I
b = 1.06610 + 1.51970I
7.86806 2.21397I 7.90519 + 4.22289I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.233677 0.885557I
a = 0.51667 1.74342I
b = 0.838791 + 0.635849I
3.73048 5.04209I 1.37593 + 7.20234I
u = 0.233677 0.885557I
a = 1.90138 0.70215I
b = 0.696354 0.161986I
7.86806 2.21397I 7.90519 + 4.22289I
u = 0.416284
a = 1.70429 + 0.71544I
b = 0.927316 0.660610I
1.02849 + 2.82812I 7.11859 2.97945I
u = 0.416284
a = 1.70429 0.71544I
b = 0.927316 + 0.660610I
1.02849 2.82812I 7.11859 + 2.97945I
u = 0.416284
a = 1.80155 + 1.87423I
b = 0.749954 0.780211I
5.16607 60.589325 + 0.10I
u = 0.416284
a = 1.80155 1.87423I
b = 0.749954 + 0.780211I
5.16607 60.589325 + 0.10I
u = 0.416284
a = 2.22761 + 1.58692I
b = 0.709470 0.297827I
1.02849 2.82812I 7.11859 + 2.97945I
u = 0.416284
a = 2.22761 1.58692I
b = 0.709470 + 0.297827I
1.02849 + 2.82812I 7.11859 2.97945I
u = 0.05818 + 1.69128I
a = 0.536946 + 0.647646I
b = 0.871737 0.114577I
12.86900 + 0.50362I 2.40898 + 0.61717I
u = 0.05818 + 1.69128I
a = 0.578917 1.066270I
b = 0.945552 + 0.820310I
12.8690 + 6.1599I 2.40898 5.34173I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.05818 + 1.69128I
a = 0.465240 + 0.575080I
b = 1.76968 1.04115I
12.8690 + 6.1599I 2.40898 5.34173I
u = 0.05818 + 1.69128I
a = 1.19026 0.79361I
b = 0.763395 + 0.134450I
17.0065 + 3.3317I 8.93825 2.36228I
u = 0.05818 + 1.69128I
a = 0.049955 0.517149I
b = 1.06411 + 0.94581I
12.86900 + 0.50362I 2.40898 + 0.61717I
u = 0.05818 + 1.69128I
a = 0.094911 0.448107I
b = 1.41147 + 1.96688I
17.0065 + 3.3317I 8.93825 2.36228I
u = 0.05818 1.69128I
a = 0.536946 0.647646I
b = 0.871737 + 0.114577I
12.86900 0.50362I 2.40898 0.61717I
u = 0.05818 1.69128I
a = 0.578917 + 1.066270I
b = 0.945552 0.820310I
12.8690 6.1599I 2.40898 + 5.34173I
u = 0.05818 1.69128I
a = 0.465240 0.575080I
b = 1.76968 + 1.04115I
12.8690 6.1599I 2.40898 + 5.34173I
u = 0.05818 1.69128I
a = 1.19026 + 0.79361I
b = 0.763395 0.134450I
17.0065 3.3317I 8.93825 + 2.36228I
u = 0.05818 1.69128I
a = 0.049955 + 0.517149I
b = 1.06411 0.94581I
12.86900 0.50362I 2.40898 0.61717I
u = 0.05818 1.69128I
a = 0.094911 + 0.448107I
b = 1.41147 1.96688I
17.0065 3.3317I 8.93825 + 2.36228I
12
III. I
u
3
= h−u
9
6u
7
12u
5
9u
3
u
2
+ b 2u 1, u
9
u
8
+ · · · + a +
6u, u
10
+ 7u
8
+ 17u
6
+ 17u
4
+ u
3
+ 7u
2
+ 2u + 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
8
=
u
9
+ u
8
7u
7
+ 6u
6
17u
5
+ 12u
4
17u
3
+ 8u
2
6u
u
9
+ 6u
7
+ 12u
5
+ 9u
3
+ u
2
+ 2u + 1
a
1
=
u
9
+ 7u
7
u
6
+ 17u
5
5u
4
+ 17u
3
6u
2
+ 7u 1
u
7
5u
5
7u
3
2u 1
a
3
=
u
6
+ u
5
5u
4
+ 4u
3
7u
2
+ 4u 2
u
8
u
7
+ 6u
6
5u
5
+ 11u
4
7u
3
+ 6u
2
2u
a
7
=
u
8
u
7
+ 6u
6
5u
5
+ 12u
4
8u
3
+ 9u
2
4u + 1
u
9
+ 6u
7
+ 12u
5
+ 9u
3
+ u
2
+ 2u + 1
a
2
=
u
5
u
4
+ 4u
3
3u
2
+ 4u 2
u
7
+ u
6
5u
5
+ 4u
4
7u
3
+ 4u
2
2u
a
10
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
9
=
u
3
2u
u
5
+ 3u
3
+ u
a
9
=
u
3
2u
u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
9
u
8
+ 9u
7
9u
6
+ 27u
5
23u
4
+ 30u
3
17u
2
+ 10u 4
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
10
+ 5u
8
u
7
+ 10u
6
3u
5
+ 9u
4
2u
3
+ 4u
2
u + 1
c
2
, c
6
u
10
+ 5u
8
+ u
7
+ 10u
6
+ 3u
5
+ 9u
4
+ 2u
3
+ 4u
2
+ u + 1
c
3
u
10
+ 3u
9
+ 4u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 3u
3
+ 1
c
4
, c
5
u
10
+ 7u
8
+ 17u
6
+ 17u
4
+ u
3
+ 7u
2
+ 2u + 1
c
7
, c
11
u
10
u
9
u
8
+ u
7
+ 3u
6
u
5
u
4
+ u
2
2u + 1
c
9
, c
10
u
10
+ 7u
8
+ 17u
6
+ 17u
4
u
3
+ 7u
2
2u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
10
+ 10y
9
+ ··· + 7y + 1
c
3
y
10
y
9
+ 4y
8
7y
7
+ 19y
6
26y
5
+ 29y
4
15y
3
+ 6y
2
+ 1
c
4
, c
5
, c
9
c
10
y
10
+ 14y
9
+ ··· + 10y + 1
c
7
, c
11
y
10
3y
9
+ 9y
8
11y
7
+ 15y
6
11y
5
+ 9y
4
y
2
2y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.383617 + 0.756267I
a = 0.885005 0.122148I
b = 0.247127 0.716158I
6.79753 + 1.39846I 1.69965 0.73977I
u = 0.383617 0.756267I
a = 0.885005 + 0.122148I
b = 0.247127 + 0.716158I
6.79753 1.39846I 1.69965 + 0.73977I
u = 0.177185 + 1.148900I
a = 0.170801 + 0.598642I
b = 0.718042 + 0.090163I
4.71292 + 1.66512I 5.84532 3.74292I
u = 0.177185 1.148900I
a = 0.170801 0.598642I
b = 0.718042 0.090163I
4.71292 1.66512I 5.84532 + 3.74292I
u = 0.06987 + 1.53463I
a = 0.477120 + 0.831031I
b = 1.24199 0.79027I
8.56067 4.15690I 5.16970 + 5.09058I
u = 0.06987 1.53463I
a = 0.477120 0.831031I
b = 1.24199 + 0.79027I
8.56067 + 4.15690I 5.16970 5.09058I
u = 0.211333 + 0.326245I
a = 0.32866 2.86378I
b = 1.003750 + 0.497986I
2.02504 3.13412I 3.07437 + 5.25222I
u = 0.211333 0.326245I
a = 0.32866 + 2.86378I
b = 1.003750 0.497986I
2.02504 + 3.13412I 3.07437 5.25222I
u = 0.07477 + 1.69713I
a = 0.519988 0.391559I
b = 0.703408 + 0.853209I
15.7373 + 3.0886I 1.21096 0.80248I
u = 0.07477 1.69713I
a = 0.519988 + 0.391559I
b = 0.703408 0.853209I
15.7373 3.0886I 1.21096 + 0.80248I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
10
+ 5u
8
u
7
+ 10u
6
3u
5
+ 9u
4
2u
3
+ 4u
2
u + 1)
· (u
18
+ 10u
16
+ ··· 2u + 1)(u
30
+ u
29
+ ··· + 312u + 43)
c
2
, c
6
(u
10
+ 5u
8
+ u
7
+ 10u
6
+ 3u
5
+ 9u
4
+ 2u
3
+ 4u
2
+ u + 1)
· (u
18
+ 10u
16
+ ··· 2u + 1)(u
30
+ u
29
+ ··· + 312u + 43)
c
3
(u
3
+ u
2
1)
10
(u
10
+ 3u
9
+ 4u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 3u
3
+ 1)
· (u
18
16u
17
+ ··· 336u + 32)
c
4
, c
5
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
6
· (u
10
+ 7u
8
+ 17u
6
+ 17u
4
+ u
3
+ 7u
2
+ 2u + 1)
· (u
18
7u
17
+ ··· 76u + 8)
c
7
, c
11
(u
10
u
9
+ ··· 2u + 1)(u
18
+ u
17
+ ··· u + 1)
· (u
30
+ 3u
29
+ ··· + 54u + 77)
c
9
, c
10
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
6
· (u
10
+ 7u
8
+ 17u
6
+ 17u
4
u
3
+ 7u
2
2u + 1)
· (u
18
7u
17
+ ··· 76u + 8)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
(y
10
+ 10y
9
+ ··· + 7y + 1)(y
18
+ 20y
17
+ ··· 10y + 1)
· (y
30
+ 27y
29
+ ··· 46776y + 1849)
c
3
(y
3
y
2
+ 2y 1)
10
· (y
10
y
9
+ 4y
8
7y
7
+ 19y
6
26y
5
+ 29y
4
15y
3
+ 6y
2
+ 1)
· (y
18
2y
17
+ ··· + 1280y + 1024)
c
4
, c
5
, c
9
c
10
((y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
6
)(y
10
+ 14y
9
+ ··· + 10y + 1)
· (y
18
+ 21y
17
+ ··· 80y + 64)
c
7
, c
11
(y
10
3y
9
+ 9y
8
11y
7
+ 15y
6
11y
5
+ 9y
4
y
2
2y + 1)
· (y
18
9y
17
+ ··· + 5y + 1)(y
30
9y
29
+ ··· 103632y + 5929)
18