11a
316
(K11a
316
)
A knot diagram
1
Linearized knot diagam
9 6 1 11 8 2 10 3 7 4 5
Solving Sequence
4,10
11
5,8
6 1 3 2 7 9
c
10
c
4
c
5
c
11
c
3
c
2
c
7
c
9
c
1
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h1.80623 × 10
32
u
61
5.14761 × 10
32
u
60
+ ··· + 4.61017 × 10
32
b 1.10416 × 10
32
,
6.91332 × 10
32
u
61
7.53652 × 10
32
u
60
+ ··· + 2.30509 × 10
33
a 2.31132 × 10
33
, u
62
2u
61
+ ··· + 3u + 1i
I
u
2
= hb 1, 5a + u 2, u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.81×10
32
u
61
5.15×10
32
u
60
+· · ·+4.61×10
32
b1.10×10
32
, 6.91×
10
32
u
61
7.54×10
32
u
60
+· · ·+2.31×10
33
a2.31×10
33
, u
62
2u
61
+· · ·+3u+1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
8
=
0.299916u
61
+ 0.326952u
60
+ ··· 3.67552u + 1.00270
0.391793u
61
+ 1.11658u
60
+ ··· 0.782541u + 0.239505
a
6
=
1.37364u
61
+ 0.955447u
60
+ ··· + 15.8721u + 3.35880
0.226500u
61
0.438184u
60
+ ··· + 5.26406u + 0.574836
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
2
=
0.403303u
61
+ 1.11034u
60
+ ··· + 3.59385u 1.62323
0.435823u
61
0.0545467u
60
+ ··· 0.0437745u 1.01330
a
7
=
0.691708u
61
0.789625u
60
+ ··· 2.89298u + 0.763197
0.391793u
61
+ 1.11658u
60
+ ··· 0.782541u + 0.239505
a
9
=
0.210043u
61
+ 0.259417u
60
+ ··· 3.20318u + 1.25041
0.348888u
61
+ 0.656606u
60
+ ··· + 0.331553u + 0.825406
a
9
=
0.210043u
61
+ 0.259417u
60
+ ··· 3.20318u + 1.25041
0.348888u
61
+ 0.656606u
60
+ ··· + 0.331553u + 0.825406
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3.89183u
61
9.68250u
60
+ ··· 4.68341u + 13.0328
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
5(5u
62
+ 7u
61
+ ··· + 100038u 28017)
c
2
, c
6
u
62
+ 2u
61
+ ··· u + 1
c
3
u
62
6u
61
+ ··· + 795u 117
c
4
, c
10
, c
11
u
62
+ 2u
61
+ ··· 3u + 1
c
5
5(5u
62
14u
61
+ ··· + 61755u + 8377)
c
7
, c
9
u
62
+ 3u
61
+ ··· + 214u 25
c
8
u
62
+ u
61
+ ··· + 280u 100
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
25(25y
62
1309y
61
+ ··· 1.54576 × 10
10
y + 7.84952 × 10
8
)
c
2
, c
6
y
62
+ 42y
61
+ ··· 25y + 1
c
3
y
62
+ 18y
61
+ ··· 440613y + 13689
c
4
, c
10
, c
11
y
62
54y
61
+ ··· 25y + 1
c
5
25(25y
62
286y
61
+ ··· 1.29244 × 10
9
y + 7.01741 × 10
7
)
c
7
, c
9
y
62
49y
61
+ ··· 22596y + 625
c
8
y
62
15y
61
+ ··· 413000y + 10000
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.887619 + 0.514849I
a = 0.168834 0.676664I
b = 1.351070 0.186432I
6.81266 + 5.56177I 4.66163 5.86539I
u = 0.887619 0.514849I
a = 0.168834 + 0.676664I
b = 1.351070 + 0.186432I
6.81266 5.56177I 4.66163 + 5.86539I
u = 0.956988 + 0.457534I
a = 0.411794 0.142908I
b = 1.44265 + 0.39962I
7.18631 7.01551I 0
u = 0.956988 0.457534I
a = 0.411794 + 0.142908I
b = 1.44265 0.39962I
7.18631 + 7.01551I 0
u = 0.268927 + 0.858943I
a = 0.487450 0.791896I
b = 1.326860 + 0.042366I
8.77447 0.73219I 8.26642 + 0.24787I
u = 0.268927 0.858943I
a = 0.487450 + 0.791896I
b = 1.326860 0.042366I
8.77447 + 0.73219I 8.26642 0.24787I
u = 0.981110 + 0.511433I
a = 0.156001 + 0.318273I
b = 1.245360 0.167604I
2.26101 + 1.03760I 0
u = 0.981110 0.511433I
a = 0.156001 0.318273I
b = 1.245360 + 0.167604I
2.26101 1.03760I 0
u = 0.216176 + 0.854810I
a = 0.879762 + 0.839368I
b = 1.284170 + 0.305083I
4.62237 5.84398I 3.48358 + 6.22366I
u = 0.216176 0.854810I
a = 0.879762 0.839368I
b = 1.284170 0.305083I
4.62237 + 5.84398I 3.48358 6.22366I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.222629 + 0.830394I
a = 0.97517 1.10506I
b = 1.47365 0.48988I
9.4690 + 11.6120I 5.02297 7.15875I
u = 0.222629 0.830394I
a = 0.97517 + 1.10506I
b = 1.47365 + 0.48988I
9.4690 11.6120I 5.02297 + 7.15875I
u = 1.133930 + 0.168026I
a = 1.26618 0.92935I
b = 0.586572 1.058950I
1.22471 2.22328I 0
u = 1.133930 0.168026I
a = 1.26618 + 0.92935I
b = 0.586572 + 1.058950I
1.22471 + 2.22328I 0
u = 1.233700 + 0.140829I
a = 1.11356 + 0.95442I
b = 0.498573 + 0.517622I
2.34840 0.48442I 0
u = 1.233700 0.140829I
a = 1.11356 0.95442I
b = 0.498573 0.517622I
2.34840 + 0.48442I 0
u = 1.228560 + 0.275128I
a = 1.155710 0.633770I
b = 1.77170 + 0.45104I
4.49072 1.35832I 0
u = 1.228560 0.275128I
a = 1.155710 + 0.633770I
b = 1.77170 0.45104I
4.49072 + 1.35832I 0
u = 0.154976 + 0.717888I
a = 0.542160 + 0.195736I
b = 0.278710 + 1.257500I
3.96361 + 5.62230I 4.59110 7.16807I
u = 0.154976 0.717888I
a = 0.542160 0.195736I
b = 0.278710 1.257500I
3.96361 5.62230I 4.59110 + 7.16807I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.046542 + 0.724748I
a = 1.208990 0.366912I
b = 1.66460 0.64188I
8.09797 2.26515I 10.09980 + 3.27421I
u = 0.046542 0.724748I
a = 1.208990 + 0.366912I
b = 1.66460 + 0.64188I
8.09797 + 2.26515I 10.09980 3.27421I
u = 1.263000 + 0.236260I
a = 0.487348 + 0.065309I
b = 1.210290 0.144045I
0.11388 + 2.17095I 0
u = 1.263000 0.236260I
a = 0.487348 0.065309I
b = 1.210290 + 0.144045I
0.11388 2.17095I 0
u = 1.288710 + 0.185153I
a = 2.28058 2.74209I
b = 0.864085 + 0.005366I
0.03983 + 2.79266I 0
u = 1.288710 0.185153I
a = 2.28058 + 2.74209I
b = 0.864085 0.005366I
0.03983 2.79266I 0
u = 0.179463 + 0.661396I
a = 0.055951 0.244113I
b = 0.050410 0.678849I
0.49280 2.22863I 1.88873 + 4.27642I
u = 0.179463 0.661396I
a = 0.055951 + 0.244113I
b = 0.050410 + 0.678849I
0.49280 + 2.22863I 1.88873 4.27642I
u = 1.293980 + 0.298379I
a = 0.30932 + 2.31869I
b = 1.60267 + 0.81560I
3.91657 + 5.96640I 0
u = 1.293980 0.298379I
a = 0.30932 2.31869I
b = 1.60267 0.81560I
3.91657 5.96640I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.301670 + 0.265672I
a = 0.14106 2.23111I
b = 1.118260 0.376395I
0.57816 4.41700I 0
u = 1.301670 0.265672I
a = 0.14106 + 2.23111I
b = 1.118260 + 0.376395I
0.57816 + 4.41700I 0
u = 0.042843 + 0.662429I
a = 1.81923 + 1.14582I
b = 1.139070 + 0.251694I
3.63336 + 1.04794I 2.34672 0.35139I
u = 0.042843 0.662429I
a = 1.81923 1.14582I
b = 1.139070 0.251694I
3.63336 1.04794I 2.34672 + 0.35139I
u = 1.334310 + 0.246440I
a = 1.069770 0.893080I
b = 0.231740 0.094385I
1.00664 2.96825I 0
u = 1.334310 0.246440I
a = 1.069770 + 0.893080I
b = 0.231740 + 0.094385I
1.00664 + 2.96825I 0
u = 0.115133 + 0.619794I
a = 1.22726 + 1.09164I
b = 0.413434 0.098972I
3.55015 0.20409I 5.98628 1.19975I
u = 0.115133 0.619794I
a = 1.22726 1.09164I
b = 0.413434 + 0.098972I
3.55015 + 0.20409I 5.98628 + 1.19975I
u = 1.372160 + 0.035845I
a = 0.47764 + 1.70860I
b = 0.237289 + 0.862746I
4.26849 + 2.33228I 0
u = 1.372160 0.035845I
a = 0.47764 1.70860I
b = 0.237289 0.862746I
4.26849 2.33228I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.354390 + 0.299440I
a = 0.88402 1.77945I
b = 0.150670 1.364490I
0.80126 9.32026I 0
u = 1.354390 0.299440I
a = 0.88402 + 1.77945I
b = 0.150670 + 1.364490I
0.80126 + 9.32026I 0
u = 1.364120 + 0.277183I
a = 0.491592 + 1.171990I
b = 0.043760 + 0.847969I
4.39333 + 5.67407I 0
u = 1.364120 0.277183I
a = 0.491592 1.171990I
b = 0.043760 0.847969I
4.39333 5.67407I 0
u = 1.41802 + 0.08070I
a = 0.165441 1.216540I
b = 0.566676 0.567301I
7.01139 + 2.01626I 0
u = 1.41802 0.08070I
a = 0.165441 + 1.216540I
b = 0.566676 + 0.567301I
7.01139 2.01626I 0
u = 1.39937 + 0.34656I
a = 0.28769 + 2.13431I
b = 1.47028 + 0.55396I
4.3271 15.8582I 0
u = 1.39937 0.34656I
a = 0.28769 2.13431I
b = 1.47028 0.55396I
4.3271 + 15.8582I 0
u = 1.39672 + 0.35868I
a = 0.16352 1.69873I
b = 1.286260 0.404733I
0.48145 + 10.21060I 0
u = 1.39672 0.35868I
a = 0.16352 + 1.69873I
b = 1.286260 + 0.404733I
0.48145 10.21060I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.463287 + 0.297906I
a = 0.788454 + 0.539829I
b = 0.250407 + 0.311008I
1.008560 0.666322I 7.37810 + 3.95165I
u = 0.463287 0.297906I
a = 0.788454 0.539829I
b = 0.250407 0.311008I
1.008560 + 0.666322I 7.37810 3.95165I
u = 0.550158 + 0.016824I
a = 1.33228 + 1.00368I
b = 0.256229 + 0.735207I
1.45921 + 2.58594I 1.55168 3.98149I
u = 0.550158 0.016824I
a = 1.33228 1.00368I
b = 0.256229 0.735207I
1.45921 2.58594I 1.55168 + 3.98149I
u = 1.42814 + 0.36734I
a = 0.564087 + 1.146080I
b = 1.270380 + 0.067319I
3.38499 3.70672I 0
u = 1.42814 0.36734I
a = 0.564087 1.146080I
b = 1.270380 0.067319I
3.38499 + 3.70672I 0
u = 1.50001 + 0.04160I
a = 1.29195 + 0.81714I
b = 1.205330 + 0.382950I
1.16526 6.77623I 0
u = 1.50001 0.04160I
a = 1.29195 0.81714I
b = 1.205330 0.382950I
1.16526 + 6.77623I 0
u = 0.239018 + 0.279647I
a = 3.12607 0.97399I
b = 1.190070 0.194532I
4.30759 0.97665I 0.516718 + 1.197110I
u = 0.239018 0.279647I
a = 3.12607 + 0.97399I
b = 1.190070 + 0.194532I
4.30759 + 0.97665I 0.516718 1.197110I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.63921
a = 0.771484
b = 1.04713
7.12923 0
u = 0.201088
a = 2.67242
b = 0.901231
1.30954 9.93960
11
II. I
u
2
= hb 1, 5a + u 2, u
2
+ u 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u + 1
a
5
=
u
u + 1
a
8
=
1
5
u +
2
5
1
a
6
=
u +
1
5
4
5
u +
8
5
a
1
=
u
u
a
3
=
2u 1
3u 1
a
2
=
4
5
u
3
5
u
1
5
a
7
=
1
5
u
3
5
1
a
9
=
1
5
u +
2
5
1
a
9
=
1
5
u +
2
5
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
72
5
u 13
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
5(5u
2
1)
c
2
, c
10
, c
11
u
2
+ u 1
c
3
u
2
+ 3u + 1
c
4
, c
6
u
2
u 1
c
5
5(5u
2
+ 5u + 1)
c
7
(u + 1)
2
c
8
u
2
c
9
(u 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
25(5y 1)
2
c
2
, c
4
, c
6
c
10
, c
11
y
2
3y + 1
c
3
y
2
7y + 1
c
5
25(25y
2
15y + 1)
c
7
, c
9
(y 1)
2
c
8
y
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.276393
b = 1.00000
0.657974 4.10030
u = 1.61803
a = 0.723607
b = 1.00000
7.23771 36.3000
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
25(5u
2
1)(5u
62
+ 7u
61
+ ··· + 100038u 28017)
c
2
(u
2
+ u 1)(u
62
+ 2u
61
+ ··· u + 1)
c
3
(u
2
+ 3u + 1)(u
62
6u
61
+ ··· + 795u 117)
c
4
(u
2
u 1)(u
62
+ 2u
61
+ ··· 3u + 1)
c
5
25(5u
2
+ 5u + 1)(5u
62
14u
61
+ ··· + 61755u + 8377)
c
6
(u
2
u 1)(u
62
+ 2u
61
+ ··· u + 1)
c
7
((u + 1)
2
)(u
62
+ 3u
61
+ ··· + 214u 25)
c
8
u
2
(u
62
+ u
61
+ ··· + 280u 100)
c
9
((u 1)
2
)(u
62
+ 3u
61
+ ··· + 214u 25)
c
10
, c
11
(u
2
+ u 1)(u
62
+ 2u
61
+ ··· 3u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
625(5y 1)
2
· (25y
62
1309y
61
+ ··· 15457580352y + 784952289)
c
2
, c
6
(y
2
3y + 1)(y
62
+ 42y
61
+ ··· 25y + 1)
c
3
(y
2
7y + 1)(y
62
+ 18y
61
+ ··· 440613y + 13689)
c
4
, c
10
, c
11
(y
2
3y + 1)(y
62
54y
61
+ ··· 25y + 1)
c
5
625(25y
2
15y + 1)
· (25y
62
286y
61
+ ··· 1292437581y + 70174129)
c
7
, c
9
((y 1)
2
)(y
62
49y
61
+ ··· 22596y + 625)
c
8
y
2
(y
62
15y
61
+ ··· 413000y + 10000)
17