11a
317
(K11a
317
)
A knot diagram
1
Linearized knot diagam
7 9 1 11 8 2 10 3 6 4 5
Solving Sequence
2,9 3,6
7 10 1 4 8 5 11
c
2
c
6
c
9
c
1
c
3
c
8
c
5
c
11
c
4
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 9521222u
24
+ 7310497u
23
+ ··· + 51467938a + 84913603, u
25
+ 9u
23
+ ··· + 2u 1i
I
u
2
= h−3.79702 × 10
56
u
47
2.02674 × 10
55
u
46
+ ··· + 3.40179 × 10
58
b + 1.47690 × 10
59
,
2.59043 × 10
36
u
47
5.89061 × 10
36
u
46
+ ··· + 8.97537 × 10
37
a 1.46834 × 10
39
,
u
48
+ u
47
+ ··· 114u + 76i
I
u
3
= hb + u, u
8
5u
6
u
5
10u
4
3u
3
9u
2
+ a 3u 3,
u
11
+ 6u
9
+ u
8
+ 15u
7
+ 4u
6
+ 19u
5
+ 6u
4
+ 12u
3
+ 3u
2
+ 3u + 1i
* 3 irreducible components of dim
C
= 0, with total 84 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 9.52 × 10
6
u
24
+ 7.31 × 10
6
u
23
+ · · · + 5.15 × 10
7
a + 8.49 ×
10
7
, u
25
+ 9u
23
+ · · · + 2u 1i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
0.184993u
24
0.142040u
23
+ ··· + 0.533191u 1.64983
u
a
7
=
0.184993u
24
0.142040u
23
+ ··· + 1.53319u 1.64983
u
a
10
=
0.249484u
24
+ 0.573176u
23
+ ··· 1.83450u + 1.36074
0.208863u
24
0.229234u
23
+ ··· + 1.09909u 0.142040
a
1
=
0.142040u
24
0.208863u
23
+ ··· 1.27985u + 0.815007
u
2
a
4
=
0.404984u
24
0.142520u
23
+ ··· 0.371512u + 1.03005
0.127693u
24
0.0749250u
23
+ ··· 0.532638u + 0.151702
a
8
=
u
u
3
+ u
a
5
=
0.127833u
24
0.0404991u
23
+ ··· + 0.184500u 1.27856
0.0196164u
24
+ 0.173697u
23
+ ··· + 1.49461u 0.472814
a
11
=
0.127434u
24
+ 0.297945u
23
+ ··· 1.85707u + 1.03254
0.293850u
24
0.0592649u
23
+ ··· + 1.55630u 0.291252
a
11
=
0.127434u
24
+ 0.297945u
23
+ ··· 1.85707u + 1.03254
0.293850u
24
0.0592649u
23
+ ··· + 1.55630u 0.291252
(ii) Obstruction class = 1
(iii) Cusp Shapes =
82053183
25733969
u
24
+
57865173
25733969
u
23
+ ···
4551724
25733969
u +
217825726
25733969
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
25
+ 9u
23
+ ··· + 2u 1
c
3
u
25
18u
24
+ ··· + 1946u 188
c
4
, c
10
, c
11
u
25
+ 6u
24
+ ··· + 14u 4
c
5
, c
7
u
25
u
24
+ ··· 3u 1
c
9
u
25
23u
24
+ ··· + 49152u 4096
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
25
+ 18y
24
+ ··· + 4y 1
c
3
y
25
+ 2y
24
+ ··· + 360428y 35344
c
4
, c
10
, c
11
y
25
22y
24
+ ··· + 140y 16
c
5
, c
7
y
25
5y
24
+ ··· + 19y 1
c
9
y
25
y
24
+ ··· + 25165824y 16777216
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.062688 + 1.054190I
a = 0.22875 + 2.02308I
b = 0.062688 + 1.054190I
1.10259 2.56061I 2.13530 + 4.85725I
u = 0.062688 1.054190I
a = 0.22875 2.02308I
b = 0.062688 1.054190I
1.10259 + 2.56061I 2.13530 4.85725I
u = 0.431005 + 1.014420I
a = 1.57469 0.29419I
b = 0.431005 + 1.014420I
3.98322 6.30520I 2.04460 + 8.85471I
u = 0.431005 1.014420I
a = 1.57469 + 0.29419I
b = 0.431005 1.014420I
3.98322 + 6.30520I 2.04460 8.85471I
u = 0.111664 + 1.150710I
a = 0.55005 + 1.77135I
b = 0.111664 + 1.150710I
7.45610 + 6.63321I 3.37442 6.60504I
u = 0.111664 1.150710I
a = 0.55005 1.77135I
b = 0.111664 1.150710I
7.45610 6.63321I 3.37442 + 6.60504I
u = 0.817149 + 0.195179I
a = 0.818471 + 0.839836I
b = 0.817149 + 0.195179I
1.75933 5.22873I 2.70405 + 4.29469I
u = 0.817149 0.195179I
a = 0.818471 0.839836I
b = 0.817149 0.195179I
1.75933 + 5.22873I 2.70405 4.29469I
u = 0.329284 + 0.707437I
a = 1.12449 1.00862I
b = 0.329284 + 0.707437I
0.24887 + 1.85876I 5.21169 1.18731I
u = 0.329284 0.707437I
a = 1.12449 + 1.00862I
b = 0.329284 0.707437I
0.24887 1.85876I 5.21169 + 1.18731I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.682331 + 0.261986I
a = 0.916549 + 0.989308I
b = 0.682331 + 0.261986I
2.97560 + 1.99862I 9.19617 1.79116I
u = 0.682331 0.261986I
a = 0.916549 0.989308I
b = 0.682331 0.261986I
2.97560 1.99862I 9.19617 + 1.79116I
u = 0.650446 + 0.309358I
a = 0.859033 0.557233I
b = 0.650446 + 0.309358I
2.96955 + 0.98970I 0.58497 + 1.31216I
u = 0.650446 0.309358I
a = 0.859033 + 0.557233I
b = 0.650446 0.309358I
2.96955 0.98970I 0.58497 1.31216I
u = 0.506874 + 0.472329I
a = 0.77448 + 1.43912I
b = 0.506874 + 0.472329I
0.027101 + 0.899324I 2.44779 5.98780I
u = 0.506874 0.472329I
a = 0.77448 1.43912I
b = 0.506874 0.472329I
0.027101 0.899324I 2.44779 + 5.98780I
u = 0.343162 + 1.368570I
a = 1.274410 + 0.462559I
b = 0.343162 + 1.368570I
13.7635 + 5.7019I 6.58533 4.59320I
u = 0.343162 1.368570I
a = 1.274410 0.462559I
b = 0.343162 1.368570I
13.7635 5.7019I 6.58533 + 4.59320I
u = 0.49075 + 1.33946I
a = 1.212400 + 0.228564I
b = 0.49075 + 1.33946I
5.95198 7.41816I 1.58248 + 3.87242I
u = 0.49075 1.33946I
a = 1.212400 0.228564I
b = 0.49075 1.33946I
5.95198 + 7.41816I 1.58248 3.87242I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.54170 + 1.40648I
a = 1.106250 + 0.225454I
b = 0.54170 + 1.40648I
4.43838 + 12.03070I 0.63983 8.03648I
u = 0.54170 1.40648I
a = 1.106250 0.225454I
b = 0.54170 1.40648I
4.43838 12.03070I 0.63983 + 8.03648I
u = 0.54820 + 1.46070I
a = 1.052770 + 0.249978I
b = 0.54820 + 1.46070I
10.0254 16.0606I 3.24174 + 8.45261I
u = 0.54820 1.46070I
a = 1.052770 0.249978I
b = 0.54820 1.46070I
10.0254 + 16.0606I 3.24174 8.45261I
u = 0.431188
a = 1.67732
b = 0.431188
0.990720 10.6390
7
II. I
u
2
= h−3.80 × 10
56
u
47
2.03 × 10
55
u
46
+ · · · + 3.40 × 10
58
b + 1.48 ×
10
59
, 2.59 × 10
36
u
47
5.89 × 10
36
u
46
+ · · · + 8.98 × 10
37
a 1.47 ×
10
39
, u
48
+ u
47
+ · · · 114u + 76i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
0.0288615u
47
+ 0.0656308u
46
+ ··· 20.8449u + 16.3597
0.0111618u
47
+ 0.000595787u
46
+ ··· + 9.23632u 4.34154
a
7
=
0.0400233u
47
+ 0.0662266u
46
+ ··· 11.6086u + 12.0181
0.0111618u
47
+ 0.000595787u
46
+ ··· + 9.23632u 4.34154
a
10
=
0.0420194u
47
+ 0.0787887u
46
+ ··· 0.594941u + 14.8597
0.111068u
47
+ 0.0434318u
46
+ ··· + 17.5888u 7.60663
a
1
=
0.0168138u
47
+ 0.0776572u
46
+ ··· + 24.0640u + 0.627739
0.0832734u
47
0.133498u
46
+ ··· 8.45658u 5.55110
a
4
=
0.145940u
47
+ 0.0918329u
46
+ ··· 59.0154u + 24.9472
0.101135u
47
+ 0.0935008u
46
+ ··· 8.22727u + 14.4058
a
8
=
u
u
3
+ u
a
5
=
0.0201071u
47
+ 0.104301u
46
+ ··· 26.0937u + 18.7558
0.00804912u
47
+ 0.0333014u
46
+ ··· + 8.41343u 3.13339
a
11
=
0.106068u
47
+ 0.361549u
46
+ ··· + 20.9043u + 2.41440
0.0231108u
47
+ 0.124603u
46
+ ··· 30.6445u + 6.90238
a
11
=
0.106068u
47
+ 0.361549u
46
+ ··· + 20.9043u + 2.41440
0.0231108u
47
+ 0.124603u
46
+ ··· 30.6445u + 6.90238
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.299258u
47
0.246468u
46
+ ··· + 7.59368u 10.2839
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
48
+ u
47
+ ··· 114u + 76
c
3
(u
12
+ 3u
11
+ ··· + 4u + 1)
4
c
4
, c
10
, c
11
(u
12
u
11
5u
10
+ 4u
9
+ 9u
8
4u
7
6u
6
2u
5
+ 3u
3
+ u
2
+ 1)
4
c
5
, c
7
u
48
+ 13u
47
+ ··· + 54u + 4
c
9
(u
2
+ u + 1)
24
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
48
+ 39y
47
+ ··· + 220932y + 5776
c
3
(y
12
+ y
11
+ ··· 2y + 1)
4
c
4
, c
10
, c
11
(y
12
11y
11
+ ··· + 2y + 1)
4
c
5
, c
7
y
48
+ 11y
47
+ ··· + 356y + 16
c
9
(y
2
+ y + 1)
24
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.119725 + 0.978589I
a = 0.933512 0.396730I
b = 0.735953 + 0.216627I
1.81971 + 1.93627I 0.00912 4.22614I
u = 0.119725 0.978589I
a = 0.933512 + 0.396730I
b = 0.735953 0.216627I
1.81971 1.93627I 0.00912 + 4.22614I
u = 0.975387 + 0.053637I
a = 0.462394 0.913306I
b = 0.248414 + 1.077640I
1.81971 + 2.12349I 0.00912 2.70206I
u = 0.975387 0.053637I
a = 0.462394 + 0.913306I
b = 0.248414 1.077640I
1.81971 2.12349I 0.00912 + 2.70206I
u = 0.248414 + 1.077640I
a = 0.864641 0.264663I
b = 0.975387 + 0.053637I
1.81971 + 2.12349I 0. 2.70206I
u = 0.248414 1.077640I
a = 0.864641 + 0.264663I
b = 0.975387 0.053637I
1.81971 2.12349I 0. + 2.70206I
u = 0.423066 + 0.782946I
a = 0.589046 0.956905I
b = 0.087660 + 0.519316I
0.20418 + 1.85492I 2.80561 0.70730I
u = 0.423066 0.782946I
a = 0.589046 + 0.956905I
b = 0.087660 0.519316I
0.20418 1.85492I 2.80561 + 0.70730I
u = 0.839580 + 0.740780I
a = 0.846588 + 0.284535I
b = 0.200259 1.354980I
8.04990 + 1.93627I 3.99088 4.22614I
u = 0.839580 0.740780I
a = 0.846588 0.284535I
b = 0.200259 + 1.354980I
8.04990 1.93627I 3.99088 + 4.22614I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.103555 + 1.115340I
a = 0.811099 0.372987I
b = 0.42519 1.56466I
4.93480 0.82777I 2.00000 2.17330I
u = 0.103555 1.115340I
a = 0.811099 + 0.372987I
b = 0.42519 + 1.56466I
4.93480 + 0.82777I 2.00000 + 2.17330I
u = 0.021432 + 1.150630I
a = 0.744302 0.448409I
b = 0.49671 1.71193I
10.07380 1.85492I 6.80561 + 0.70730I
u = 0.021432 1.150630I
a = 0.744302 + 0.448409I
b = 0.49671 + 1.71193I
10.07380 + 1.85492I 6.80561 0.70730I
u = 0.531251 + 1.069240I
a = 0.463250 0.697786I
b = 0.089046 + 0.280790I
4.93480 5.55830I 2.00000 + 1.67128I
u = 0.531251 1.069240I
a = 0.463250 + 0.697786I
b = 0.089046 0.280790I
4.93480 + 5.55830I 2.00000 1.67128I
u = 0.358210 + 1.155170I
a = 0.806376 0.182786I
b = 1.230640 0.061737I
0.20418 5.91469I 3.00000 + 7.63550I
u = 0.358210 1.155170I
a = 0.806376 + 0.182786I
b = 1.230640 + 0.061737I
0.20418 + 5.91469I 3.00000 7.63550I
u = 1.230640 + 0.061737I
a = 0.440487 + 0.681622I
b = 0.358210 1.155170I
0.20418 + 5.91469I 3.00000 7.63550I
u = 1.230640 0.061737I
a = 0.440487 0.681622I
b = 0.358210 + 1.155170I
0.20418 5.91469I 3.00000 + 7.63550I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.735953 + 0.216627I
a = 0.306466 1.266950I
b = 0.119725 + 0.978589I
1.81971 + 1.93627I 0.00912 4.22614I
u = 0.735953 0.216627I
a = 0.306466 + 1.266950I
b = 0.119725 0.978589I
1.81971 1.93627I 0.00912 + 4.22614I
u = 0.393376 + 1.207210I
a = 0.770526 0.163098I
b = 1.341440 0.149230I
4.93480 + 9.61806I 0. 8.59949I
u = 0.393376 1.207210I
a = 0.770526 + 0.163098I
b = 1.341440 + 0.149230I
4.93480 9.61806I 0. + 8.59949I
u = 0.139190 + 1.313850I
a = 0.691702 0.307281I
b = 0.68913 1.36774I
4.93480 + 3.23200I 0
u = 0.139190 1.313850I
a = 0.691702 + 0.307281I
b = 0.68913 + 1.36774I
4.93480 3.23200I 0
u = 0.068128 + 1.345270I
a = 0.660883 0.338204I
b = 0.81330 1.51334I
10.07380 5.91469I 0
u = 0.068128 1.345270I
a = 0.660883 + 0.338204I
b = 0.81330 + 1.51334I
10.07380 + 5.91469I 0
u = 0.280065 + 0.589338I
a = 1.52767 0.12243I
b = 0.06781 1.45011I
8.04990 + 2.12349I 3.99088 2.70206I
u = 0.280065 0.589338I
a = 1.52767 + 0.12243I
b = 0.06781 + 1.45011I
8.04990 2.12349I 3.99088 + 2.70206I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.341440 + 0.149230I
a = 0.439121 + 0.596745I
b = 0.393376 1.207210I
4.93480 9.61806I 0
u = 1.341440 0.149230I
a = 0.439121 0.596745I
b = 0.393376 + 1.207210I
4.93480 + 9.61806I 0
u = 0.200259 + 1.354980I
a = 0.678850 0.268678I
b = 0.839580 0.740780I
8.04990 1.93627I 0
u = 0.200259 1.354980I
a = 0.678850 + 0.268678I
b = 0.839580 + 0.740780I
8.04990 + 1.93627I 0
u = 0.06781 + 1.45011I
a = 0.612000 0.316184I
b = 0.280065 0.589338I
8.04990 2.12349I 0
u = 0.06781 1.45011I
a = 0.612000 + 0.316184I
b = 0.280065 + 0.589338I
8.04990 + 2.12349I 0
u = 0.087660 + 0.519316I
a = 1.46341 1.20983I
b = 0.423066 + 0.782946I
0.20418 + 1.85492I 2.80561 0.70730I
u = 0.087660 0.519316I
a = 1.46341 + 1.20983I
b = 0.423066 0.782946I
0.20418 1.85492I 2.80561 + 0.70730I
u = 0.68913 + 1.36774I
a = 0.651882 0.037119I
b = 0.139190 1.313850I
4.93480 3.23200I 0
u = 0.68913 1.36774I
a = 0.651882 + 0.037119I
b = 0.139190 + 1.313850I
4.93480 + 3.23200I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.42519 + 1.56466I
a = 0.596297 0.157517I
b = 0.103555 1.115340I
4.93480 + 0.82777I 0
u = 0.42519 1.56466I
a = 0.596297 + 0.157517I
b = 0.103555 + 1.115340I
4.93480 0.82777I 0
u = 0.089046 + 0.280790I
a = 3.31552 0.72925I
b = 0.531251 + 1.069240I
4.93480 5.55830I 2.00000 + 1.67128I
u = 0.089046 0.280790I
a = 3.31552 + 0.72925I
b = 0.531251 1.069240I
4.93480 + 5.55830I 2.00000 1.67128I
u = 0.81330 + 1.51334I
a = 0.581788 0.017729I
b = 0.068128 1.345270I
10.07380 + 5.91469I 0
u = 0.81330 1.51334I
a = 0.581788 + 0.017729I
b = 0.068128 + 1.345270I
10.07380 5.91469I 0
u = 0.49671 + 1.71193I
a = 0.544757 0.134009I
b = 0.021432 1.150630I
10.07380 + 1.85492I 0
u = 0.49671 1.71193I
a = 0.544757 + 0.134009I
b = 0.021432 + 1.150630I
10.07380 1.85492I 0
15
III. I
u
3
= hb + u, u
8
5u
6
+ · · · + a 3, u
11
+ 6u
9
+ · · · + 3u + 1i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
6
=
u
8
+ 5u
6
+ u
5
+ 10u
4
+ 3u
3
+ 9u
2
+ 3u + 3
u
a
7
=
u
8
+ 5u
6
+ u
5
+ 10u
4
+ 3u
3
+ 9u
2
+ 2u + 3
u
a
10
=
u
10
+ 5u
8
+ u
7
+ 9u
6
+ 3u
5
+ 5u
4
+ 2u
3
3u
2
2u 3
u
10
5u
8
u
7
10u
6
3u
5
9u
4
3u
3
3u
2
+ u
a
1
=
u
9
5u
7
u
6
10u
5
3u
4
9u
3
2u
2
3u + 1
u
2
a
4
=
u
9
+ 6u
7
+ 2u
6
+ 14u
5
+ 7u
4
+ 15u
3
+ 9u
2
+ 6u + 3
u
9
5u
7
10u
5
u
4
9u
3
3u
2
3u 1
a
8
=
u
u
3
+ u
a
5
=
u
8
+ 5u
6
+ u
5
+ 10u
4
+ 4u
3
+ 9u
2
+ 4u + 3
u
5
2u
3
2u
a
11
=
u
10
u
9
+ 5u
8
5u
7
+ 9u
6
10u
5
+ 5u
4
9u
3
2u
2
3u 2
u
9
u
8
+ 4u
7
4u
6
+ 6u
5
6u
4
+ 3u
3
2u
2
+ u
a
11
=
u
10
u
9
+ 5u
8
5u
7
+ 9u
6
10u
5
+ 5u
4
9u
3
2u
2
3u 2
u
9
u
8
+ 4u
7
4u
6
+ 6u
5
6u
4
+ 3u
3
2u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
10
7u
9
6u
8
40u
7
22u
6
92u
5
44u
4
96u
3
43u
2
37u 10
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
11
+ 6u
9
u
8
+ 15u
7
4u
6
+ 19u
5
6u
4
+ 12u
3
3u
2
+ 3u 1
c
2
, c
6
u
11
+ 6u
9
+ u
8
+ 15u
7
+ 4u
6
+ 19u
5
+ 6u
4
+ 12u
3
+ 3u
2
+ 3u + 1
c
3
u
11
+ 3u
10
+ 5u
9
+ u
8
2u
7
+ 6u
6
+ 25u
5
+ 21u
4
+ 4u
3
2u
2
+ 3u 1
c
4
u
11
u
10
5u
9
+ 4u
8
+ 9u
7
3u
6
7u
5
5u
4
+ 3u
3
+ 5u
2
u + 1
c
5
, c
7
u
11
u
10
+ u
9
+ 2u
8
u
7
+ u
6
+ 2u
5
+ 2u
4
+ u
2
+ 2u + 1
c
9
u
11
2u
10
+ u
9
+ 2u
7
2u
6
+ u
5
+ u
4
+ 2u
3
u
2
u 1
c
10
, c
11
u
11
+ u
10
5u
9
4u
8
+ 9u
7
+ 3u
6
7u
5
+ 5u
4
+ 3u
3
5u
2
u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
11
+ 12y
10
+ ··· + 3y 1
c
3
y
11
+ y
10
+ ··· + 5y 1
c
4
, c
10
, c
11
y
11
11y
10
+ ··· 9y 1
c
5
, c
7
y
11
+ y
10
+ 3y
9
+ 5y
7
7y
6
+ 2y
5
14y
4
+ 2y
3
5y
2
+ 2y 1
c
9
y
11
2y
10
+ 5y
9
2y
8
+ 14y
7
2y
6
+ 7y
5
5y
4
3y
2
y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.418339 + 0.831995I
a = 0.606054 + 1.113310I
b = 0.418339 0.831995I
5.21814 6.73322I 3.33459 + 9.11200I
u = 0.418339 0.831995I
a = 0.606054 1.113310I
b = 0.418339 + 0.831995I
5.21814 + 6.73322I 3.33459 9.11200I
u = 0.206293 + 0.670051I
a = 0.29791 + 2.15781I
b = 0.206293 0.670051I
0.39973 + 2.50595I 8.65215 11.04149I
u = 0.206293 0.670051I
a = 0.29791 2.15781I
b = 0.206293 + 0.670051I
0.39973 2.50595I 8.65215 + 11.04149I
u = 0.336362 + 1.325590I
a = 0.618059 0.244698I
b = 0.336362 1.325590I
4.66204 2.24789I 1.66012 + 1.37513I
u = 0.336362 1.325590I
a = 0.618059 + 0.244698I
b = 0.336362 + 1.325590I
4.66204 + 2.24789I 1.66012 1.37513I
u = 0.462153 + 1.313220I
a = 0.544440 0.032729I
b = 0.462153 1.313220I
8.67034 + 0.51327I 6.20283 + 0.66507I
u = 0.462153 1.313220I
a = 0.544440 + 0.032729I
b = 0.462153 + 1.313220I
8.67034 0.51327I 6.20283 0.66507I
u = 0.24138 + 1.42400I
a = 0.411635 0.412221I
b = 0.24138 1.42400I
9.65640 + 4.37744I 5.30226 2.74758I
u = 0.24138 1.42400I
a = 0.411635 + 0.412221I
b = 0.24138 + 1.42400I
9.65640 4.37744I 5.30226 + 2.74758I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.310244
a = 2.94026
b = 0.310244
0.313358 0.0548380
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
11
+ 6u
9
u
8
+ 15u
7
4u
6
+ 19u
5
6u
4
+ 12u
3
3u
2
+ 3u 1)
· (u
25
+ 9u
23
+ ··· + 2u 1)(u
48
+ u
47
+ ··· 114u + 76)
c
2
, c
6
(u
11
+ 6u
9
+ u
8
+ 15u
7
+ 4u
6
+ 19u
5
+ 6u
4
+ 12u
3
+ 3u
2
+ 3u + 1)
· (u
25
+ 9u
23
+ ··· + 2u 1)(u
48
+ u
47
+ ··· 114u + 76)
c
3
(u
11
+ 3u
10
+ 5u
9
+ u
8
2u
7
+ 6u
6
+ 25u
5
+ 21u
4
+ 4u
3
2u
2
+ 3u 1)
· ((u
12
+ 3u
11
+ ··· + 4u + 1)
4
)(u
25
18u
24
+ ··· + 1946u 188)
c
4
(u
11
u
10
5u
9
+ 4u
8
+ 9u
7
3u
6
7u
5
5u
4
+ 3u
3
+ 5u
2
u + 1)
· (u
12
u
11
5u
10
+ 4u
9
+ 9u
8
4u
7
6u
6
2u
5
+ 3u
3
+ u
2
+ 1)
4
· (u
25
+ 6u
24
+ ··· + 14u 4)
c
5
, c
7
(u
11
u
10
+ u
9
+ 2u
8
u
7
+ u
6
+ 2u
5
+ 2u
4
+ u
2
+ 2u + 1)
· (u
25
u
24
+ ··· 3u 1)(u
48
+ 13u
47
+ ··· + 54u + 4)
c
9
((u
2
+ u + 1)
24
)(u
11
2u
10
+ ··· u 1)
· (u
25
23u
24
+ ··· + 49152u 4096)
c
10
, c
11
(u
11
+ u
10
5u
9
4u
8
+ 9u
7
+ 3u
6
7u
5
+ 5u
4
+ 3u
3
5u
2
u 1)
· (u
12
u
11
5u
10
+ 4u
9
+ 9u
8
4u
7
6u
6
2u
5
+ 3u
3
+ u
2
+ 1)
4
· (u
25
+ 6u
24
+ ··· + 14u 4)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
(y
11
+ 12y
10
+ ··· + 3y 1)(y
25
+ 18y
24
+ ··· + 4y 1)
· (y
48
+ 39y
47
+ ··· + 220932y + 5776)
c
3
(y
11
+ y
10
+ ··· + 5y 1)(y
12
+ y
11
+ ··· 2y + 1)
4
· (y
25
+ 2y
24
+ ··· + 360428y 35344)
c
4
, c
10
, c
11
(y
11
11y
10
+ ··· 9y 1)(y
12
11y
11
+ ··· + 2y + 1)
4
· (y
25
22y
24
+ ··· + 140y 16)
c
5
, c
7
(y
11
+ y
10
+ 3y
9
+ 5y
7
7y
6
+ 2y
5
14y
4
+ 2y
3
5y
2
+ 2y 1)
· (y
25
5y
24
+ ··· + 19y 1)(y
48
+ 11y
47
+ ··· + 356y + 16)
c
9
(y
2
+ y + 1)
24
· (y
11
2y
10
+ 5y
9
2y
8
+ 14y
7
2y
6
+ 7y
5
5y
4
3y
2
y 1)
· (y
25
y
24
+ ··· + 25165824y 16777216)
22