11a
318
(K11a
318
)
A knot diagram
1
Linearized knot diagam
6 8 1 9 11 2 10 3 5 7 4
Solving Sequence
4,9
5
1,10
3 8 2 7 11 6
c
4
c
9
c
3
c
8
c
2
c
7
c
11
c
5
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h970383u
17
+ 408499u
16
+ ··· + 1982053b + 372351,
1777862u
17
876895u
16
+ ··· + 1982053a 4101509, u
18
+ u
17
+ ··· + u
2
1i
I
u
2
= h7.25333 × 10
100
u
59
+ 1.20321 × 10
99
u
58
+ ··· + 5.25066 × 10
101
b 1.15506 × 10
102
,
3.92526 × 10
102
u
59
+ 3.63473 × 10
101
u
58
+ ··· + 8.92612 × 10
102
a + 1.52814 × 10
104
,
u
60
u
59
+ ··· 109u + 17i
I
u
3
= h−509u
19
338u
18
+ ··· + 367b 1165, 610u
19
321u
18
+ ··· + 367a 671, u
20
8u
18
+ ··· + u 1i
I
u
4
= hu
3
+ b + 1, u
2
+ a + u, u
4
+ u 1i
I
u
5
= h638u
11
606u
10
+ ··· + 697b 1440, 936u
11
+ 352u
10
+ ··· + 697a 1503,
u
12
2u
10
+ u
9
5u
7
+ 6u
6
+ u
5
9u
4
+ 5u
3
+ 6u
2
2u 1i
I
u
6
= hb + 1, a + 1, u 1i
* 6 irreducible components of dim
C
= 0, with total 115 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h9.70 × 10
5
u
17
+ 4.08 × 10
5
u
16
+ · · · + 1.98 × 10
6
b + 3.72 × 10
5
, 1.78 ×
10
6
u
17
8.77 × 10
5
u
16
+ · · · + 1.98 × 10
6
a 4.10 × 10
6
, u
18
+ u
17
+ · · · + u
2
1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
1
=
0.896980u
17
+ 0.442418u
16
+ ··· 1.43884u + 2.06932
0.489585u
17
0.206099u
16
+ ··· + 1.33228u 0.187861
a
10
=
u
u
3
+ u
a
3
=
0.0859684u
17
+ 0.537916u
16
+ ··· 8.56326u + 0.601597
0.459466u
17
0.352058u
16
+ ··· + 1.86468u + 0.0670699
a
8
=
0.799368u
17
+ 0.226871u
16
+ ··· 7.13272u 2.24851
0.229761u
17
+ 0.320704u
16
+ ··· + 2.30647u + 0.343733
a
2
=
0.139285u
17
+ 0.903251u
16
+ ··· 3.05848u + 3.34917
0.00845336u
17
0.364603u
16
+ ··· + 1.75892u 0.515882
a
7
=
0.515882u
17
+ 0.507429u
16
+ ··· 6.94486u 1.75892
0.0450356u
17
+ 0.277375u
16
+ ··· + 1.83513u + 0.418192
a
11
=
0.407395u
17
+ 0.236319u
16
+ ··· 0.106565u + 1.88146
0.489585u
17
0.206099u
16
+ ··· + 1.33228u 0.187861
a
6
=
1.27985u
17
0.522154u
16
+ ··· + 3.59568u + 1.61964
0.328021u
17
0.170017u
16
+ ··· 1.31924u 0.426645
a
6
=
1.27985u
17
0.522154u
16
+ ··· + 3.59568u + 1.61964
0.328021u
17
0.170017u
16
+ ··· 1.31924u 0.426645
(ii) Obstruction class = 1
(iii) Cusp Shapes =
763801
1982053
u
17
+
1992896
1982053
u
16
+ ··· +
433836
1982053
u
27209831
1982053
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
9
u
18
+ u
17
+ ··· + u
2
1
c
2
, c
8
u
18
+ u
17
+ ··· + 50u + 4
c
3
, c
7
, c
10
c
11
u
18
2u
17
+ ··· + 3u + 1
c
5
u
18
+ 6u
17
+ ··· 416u 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
y
18
11y
17
+ ··· 2y + 1
c
2
, c
8
y
18
13y
17
+ ··· 1100y + 16
c
3
, c
7
, c
10
c
11
y
18
+ 8y
17
+ ··· 9y + 1
c
5
y
18
+ 56y
16
+ ··· 37888y + 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.969317
a = 1.04231
b = 1.08420
4.93604 18.1160
u = 0.503027 + 0.934053I
a = 0.117406 + 1.399640I
b = 0.129111 1.119030I
5.93090 0.43570I 2.98328 + 1.68118I
u = 0.503027 0.934053I
a = 0.117406 1.399640I
b = 0.129111 + 1.119030I
5.93090 + 0.43570I 2.98328 1.68118I
u = 1.155400 + 0.382844I
a = 0.0504197 0.0044892I
b = 1.25719 + 0.67749I
8.49225 + 3.12657I 16.5106 4.5687I
u = 1.155400 0.382844I
a = 0.0504197 + 0.0044892I
b = 1.25719 0.67749I
8.49225 3.12657I 16.5106 + 4.5687I
u = 1.219630 + 0.122646I
a = 1.35114 + 1.57540I
b = 0.417269 0.993577I
4.77876 + 5.57099I 14.6445 6.8943I
u = 1.219630 0.122646I
a = 1.35114 1.57540I
b = 0.417269 + 0.993577I
4.77876 5.57099I 14.6445 + 6.8943I
u = 1.306390 + 0.030156I
a = 0.314125 0.649221I
b = 0.308458 0.604810I
7.41832 + 1.14356I 14.7481 6.1062I
u = 1.306390 0.030156I
a = 0.314125 + 0.649221I
b = 0.308458 + 0.604810I
7.41832 1.14356I 14.7481 + 6.1062I
u = 1.244330 + 0.432653I
a = 1.32213 0.57859I
b = 0.507053 + 1.110690I
0.46162 + 9.59091I 11.3598 8.6982I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.244330 0.432653I
a = 1.32213 + 0.57859I
b = 0.507053 1.110690I
0.46162 9.59091I 11.3598 + 8.6982I
u = 0.52847 + 1.35181I
a = 0.436864 + 1.177610I
b = 0.402613 0.935090I
2.78527 3.16569I 11.24611 + 7.60453I
u = 0.52847 1.35181I
a = 0.436864 1.177610I
b = 0.402613 + 0.935090I
2.78527 + 3.16569I 11.24611 7.60453I
u = 1.37244 + 0.65413I
a = 0.72292 1.23621I
b = 0.73238 + 1.24612I
3.9350 17.2773I 12.8790 + 9.3490I
u = 1.37244 0.65413I
a = 0.72292 + 1.23621I
b = 0.73238 1.24612I
3.9350 + 17.2773I 12.8790 9.3490I
u = 0.333926
a = 0.701030
b = 0.239136
0.538352 18.5400
u = 0.148267 + 0.251923I
a = 3.22899 2.73957I
b = 0.273082 + 0.887649I
1.73441 + 2.46344I 11.30045 4.80762I
u = 0.148267 0.251923I
a = 3.22899 + 2.73957I
b = 0.273082 0.887649I
1.73441 2.46344I 11.30045 + 4.80762I
6
II. I
u
2
= h7.25 × 10
100
u
59
+ 1.20 × 10
99
u
58
+ · · · + 5.25 × 10
101
b 1.16 ×
10
102
, 3.93 × 10
102
u
59
+ 3.63 × 10
101
u
58
+ · · · + 8.93 × 10
102
a + 1.53 ×
10
104
, u
60
u
59
+ · · · 109u + 17i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
1
=
0.439749u
59
0.0407201u
58
+ ··· + 31.2675u 17.1199
0.138141u
59
0.00229154u
58
+ ··· 8.07888u + 2.19983
a
10
=
u
u
3
+ u
a
3
=
0.106939u
59
+ 0.0813048u
58
+ ··· + 0.961685u + 8.85949
0.0242627u
59
+ 0.0260886u
58
+ ··· 2.48933u 0.0619791
a
8
=
0.0488347u
59
0.0246562u
58
+ ··· + 10.6648u + 7.45876
0.144743u
59
0.00850452u
58
+ ··· 13.1254u + 2.03107
a
2
=
0.254240u
59
0.0726928u
58
+ ··· 28.4567u + 3.38184
0.312091u
59
+ 0.0424687u
58
+ ··· 33.3786u + 6.15466
a
7
=
0.141036u
59
0.0530891u
58
+ ··· + 1.08963u + 9.25438
0.159476u
59
+ 0.00805005u
58
+ ··· 15.1320u + 2.28623
a
11
=
0.301608u
59
0.0430116u
58
+ ··· + 23.1886u 14.9200
0.138141u
59
0.00229154u
58
+ ··· 8.07888u + 2.19983
a
6
=
0.451448u
59
+ 0.0218306u
58
+ ··· 41.4070u 0.151128
0.0195413u
59
+ 0.0319909u
58
+ ··· + 2.12465u + 0.466720
a
6
=
0.451448u
59
+ 0.0218306u
58
+ ··· 41.4070u 0.151128
0.0195413u
59
+ 0.0319909u
58
+ ··· + 2.12465u + 0.466720
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.457112u
59
+ 0.104838u
58
+ ··· + 36.7319u 21.5900
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
9
u
60
u
59
+ ··· 109u + 17
c
2
, c
8
(u
30
+ 6u
29
+ ··· + 170u + 36)
2
c
3
, c
7
, c
10
c
11
u
60
2u
59
+ ··· + 2u 1
c
5
(u
30
2u
29
+ ··· + 2u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
y
60
41y
59
+ ··· 18409y + 289
c
2
, c
8
(y
30
22y
29
+ ··· 460y + 1296)
2
c
3
, c
7
, c
10
c
11
y
60
+ 32y
59
+ ··· + 20y + 1
c
5
(y
30
2y
29
+ ··· 84y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.173863 + 0.983906I
a = 0.595302 1.227680I
b = 0.568581 + 1.096680I
3.15719 4.84917I 13.58414 + 3.73183I
u = 0.173863 0.983906I
a = 0.595302 + 1.227680I
b = 0.568581 1.096680I
3.15719 + 4.84917I 13.58414 3.73183I
u = 0.884656 + 0.446724I
a = 0.96473 1.07896I
b = 0.529022 0.052524I
2.06368 + 5.36613I 15.7641 4.3359I
u = 0.884656 0.446724I
a = 0.96473 + 1.07896I
b = 0.529022 + 0.052524I
2.06368 5.36613I 15.7641 + 4.3359I
u = 0.952526 + 0.271233I
a = 0.835395 + 0.173435I
b = 0.615493 + 0.932690I
1.57409 + 1.75671I 11.26354 2.48942I
u = 0.952526 0.271233I
a = 0.835395 0.173435I
b = 0.615493 0.932690I
1.57409 1.75671I 11.26354 + 2.48942I
u = 0.903459 + 0.213520I
a = 0.143616 + 1.243570I
b = 0.06489 1.61687I
1.72325 5.82388I 14.0227 + 8.3964I
u = 0.903459 0.213520I
a = 0.143616 1.243570I
b = 0.06489 + 1.61687I
1.72325 + 5.82388I 14.0227 8.3964I
u = 0.918123 + 0.113673I
a = 1.29720 2.26960I
b = 0.430781 + 1.048900I
5.82415 2.23290I 14.1085 2.1221I
u = 0.918123 0.113673I
a = 1.29720 + 2.26960I
b = 0.430781 1.048900I
5.82415 + 2.23290I 14.1085 + 2.1221I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.058310 + 0.321731I
a = 0.993888 + 0.573737I
b = 0.319807 0.896497I
0.48113 + 1.41291I 11.00000 + 0.I
u = 1.058310 0.321731I
a = 0.993888 0.573737I
b = 0.319807 + 0.896497I
0.48113 1.41291I 11.00000 + 0.I
u = 0.868439 + 0.693479I
a = 0.592584 + 0.822702I
b = 0.315851 1.166500I
1.57409 + 1.75671I 11.00000 + 0.I
u = 0.868439 0.693479I
a = 0.592584 0.822702I
b = 0.315851 + 1.166500I
1.57409 1.75671I 11.00000 + 0.I
u = 0.172475 + 0.855408I
a = 0.33105 1.48907I
b = 0.616890 + 0.324785I
2.27554 + 5.83321I 13.60048 3.60394I
u = 0.172475 0.855408I
a = 0.33105 + 1.48907I
b = 0.616890 0.324785I
2.27554 5.83321I 13.60048 + 3.60394I
u = 0.723442 + 0.483773I
a = 1.08899 1.57094I
b = 0.601195 + 1.083620I
1.99201 + 3.02567I 9.17011 1.57690I
u = 0.723442 0.483773I
a = 1.08899 + 1.57094I
b = 0.601195 1.083620I
1.99201 3.02567I 9.17011 + 1.57690I
u = 0.913487 + 0.729355I
a = 0.84143 1.18997I
b = 0.839696 + 0.905250I
1.72325 5.82388I 0
u = 0.913487 0.729355I
a = 0.84143 + 1.18997I
b = 0.839696 0.905250I
1.72325 + 5.82388I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.681546 + 0.443831I
a = 1.314210 0.385156I
b = 0.168505 + 1.140690I
1.99201 + 3.02567I 9.17011 1.57690I
u = 0.681546 0.443831I
a = 1.314210 + 0.385156I
b = 0.168505 1.140690I
1.99201 3.02567I 9.17011 + 1.57690I
u = 0.639831 + 0.484680I
a = 0.649950 0.261552I
b = 0.343005 0.289428I
2.17471 2.01374I 7.73585 + 3.91188I
u = 0.639831 0.484680I
a = 0.649950 + 0.261552I
b = 0.343005 + 0.289428I
2.17471 + 2.01374I 7.73585 3.91188I
u = 1.036460 + 0.711450I
a = 0.32156 1.74527I
b = 0.521860 + 1.024170I
6.56195 4.20028I 0
u = 1.036460 0.711450I
a = 0.32156 + 1.74527I
b = 0.521860 1.024170I
6.56195 + 4.20028I 0
u = 1.26027
a = 0.136432
b = 1.08341
5.55198 0
u = 0.673649 + 0.289156I
a = 2.03586 1.79948I
b = 0.100294 0.250395I
2.10401 + 5.43294I 16.4599 1.4390I
u = 0.673649 0.289156I
a = 2.03586 + 1.79948I
b = 0.100294 + 0.250395I
2.10401 5.43294I 16.4599 + 1.4390I
u = 0.205467 + 0.686465I
a = 0.31789 + 1.74264I
b = 0.325811 1.261230I
3.74729 5.28000I 5.18091 + 3.40493I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.205467 0.686465I
a = 0.31789 1.74264I
b = 0.325811 + 1.261230I
3.74729 + 5.28000I 5.18091 3.40493I
u = 1.260710 + 0.276157I
a = 0.837013 + 0.676075I
b = 0.599749 1.161530I
2.06368 5.36613I 0
u = 1.260710 0.276157I
a = 0.837013 0.676075I
b = 0.599749 + 1.161530I
2.06368 + 5.36613I 0
u = 0.185453 + 1.290280I
a = 0.326081 + 1.289900I
b = 0.552043 1.093600I
0.13405 + 10.50230I 0
u = 0.185453 1.290280I
a = 0.326081 1.289900I
b = 0.552043 + 1.093600I
0.13405 10.50230I 0
u = 1.157510 + 0.625695I
a = 1.029550 0.832056I
b = 0.403736 + 0.982366I
3.74729 5.28000I 0
u = 1.157510 0.625695I
a = 1.029550 + 0.832056I
b = 0.403736 0.982366I
3.74729 + 5.28000I 0
u = 1.292280 + 0.285538I
a = 0.858396 + 0.914234I
b = 0.583662 1.209510I
2.10401 5.43294I 0
u = 1.292280 0.285538I
a = 0.858396 0.914234I
b = 0.583662 + 1.209510I
2.10401 + 5.43294I 0
u = 0.335964 + 0.575378I
a = 0.270786 0.040171I
b = 0.749034 0.108799I
0.48113 1.41291I 11.50731 + 0.65666I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.335964 0.575378I
a = 0.270786 + 0.040171I
b = 0.749034 + 0.108799I
0.48113 + 1.41291I 11.50731 0.65666I
u = 1.290140 + 0.372995I
a = 0.0208764 + 0.0986315I
b = 0.980371 0.207899I
3.15719 + 4.84917I 0
u = 1.290140 0.372995I
a = 0.0208764 0.0986315I
b = 0.980371 + 0.207899I
3.15719 4.84917I 0
u = 0.099098 + 0.640186I
a = 0.09004 1.81958I
b = 0.212959 + 1.109000I
2.17471 + 2.01374I 7.73585 3.91188I
u = 0.099098 0.640186I
a = 0.09004 + 1.81958I
b = 0.212959 1.109000I
2.17471 2.01374I 7.73585 + 3.91188I
u = 1.291760 + 0.455145I
a = 0.0309170 0.0318134I
b = 1.187980 0.445839I
6.51599 10.49730I 0
u = 1.291760 0.455145I
a = 0.0309170 + 0.0318134I
b = 1.187980 + 0.445839I
6.51599 + 10.49730I 0
u = 1.306830 + 0.465197I
a = 0.630886 + 1.147070I
b = 0.620144 1.216600I
2.27554 5.83321I 0
u = 1.306830 0.465197I
a = 0.630886 1.147070I
b = 0.620144 + 1.216600I
2.27554 + 5.83321I 0
u = 1.269270 + 0.579030I
a = 0.723396 + 1.171420I
b = 0.81690 1.22821I
6.51599 + 10.49730I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.269270 0.579030I
a = 0.723396 1.171420I
b = 0.81690 + 1.22821I
6.51599 10.49730I 0
u = 1.40424 + 0.40913I
a = 0.380784 + 0.192994I
b = 0.481225 0.576338I
7.98335 0
u = 1.40424 0.40913I
a = 0.380784 0.192994I
b = 0.481225 + 0.576338I
7.98335 0
u = 1.50639 + 0.03128I
a = 0.313720 + 0.382658I
b = 0.350132 + 0.706526I
5.82415 + 2.23290I 0
u = 1.50639 0.03128I
a = 0.313720 0.382658I
b = 0.350132 0.706526I
5.82415 2.23290I 0
u = 1.33093 + 0.72650I
a = 0.54342 1.31576I
b = 0.605352 + 1.216900I
0.13405 + 10.50230I 0
u = 1.33093 0.72650I
a = 0.54342 + 1.31576I
b = 0.605352 1.216900I
0.13405 10.50230I 0
u = 1.64506 + 0.30278I
a = 0.056451 0.315590I
b = 0.504888 + 0.670086I
6.56195 4.20028I 0
u = 1.64506 0.30278I
a = 0.056451 + 0.315590I
b = 0.504888 0.670086I
6.56195 + 4.20028I 0
u = 0.135724
a = 10.1813
b = 0.678987
5.55198 15.3380
15
III. I
u
3
= h−509u
19
338u
18
+ · · · + 367b 1165, 610u
19
321u
18
+ · · · +
367a 671, u
20
8u
18
+ · · · + u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
1
=
1.66213u
19
+ 0.874659u
18
+ ··· 4.53951u + 1.82834
1.38692u
19
+ 0.920981u
18
+ ··· + 1.83379u + 3.17439
a
10
=
u
u
3
+ u
a
3
=
0.250681u
19
0.681199u
18
+ ··· + 1.98093u 1.32425
0.752044u
19
0.956403u
18
+ ··· + 5.05722u + 0.972752
a
8
=
0.594005u
19
0.00544959u
18
+ ··· + 0.367847u 1.74659
0.681199u
19
1.19891u
18
+ ··· + 1.92643u 1.25068
a
2
=
0.594005u
19
0.994550u
18
+ ··· + 2.63215u 0.253406
1.34060u
19
+ 0.599455u
18
+ ··· + 4.53678u + 4.12534
a
7
=
0.673025u
19
1.02452u
18
+ ··· + 1.15531u 3.35967
0.675749u
19
0.749319u
18
+ ··· + 2.07902u 0.656676
a
11
=
0.275204u
19
+ 1.79564u
18
+ ··· 2.70572u + 5.00272
1.38692u
19
+ 0.920981u
18
+ ··· + 1.83379u + 3.17439
a
6
=
1.65668u
19
1.32425u
18
+ ··· + 3.38692u 2.42234
1.35422u
19
0.223433u
18
+ ··· 2.91826u 2.61035
a
6
=
1.65668u
19
1.32425u
18
+ ··· + 3.38692u 2.42234
1.35422u
19
0.223433u
18
+ ··· 2.91826u 2.61035
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1598
367
u
19
3955
367
u
18
+ ··· +
8778
367
u
10786
367
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
20
8u
18
+ ··· + u 1
c
2
(u
10
5u
8
+ 8u
6
+ 4u
5
6u
4
3u
3
+ 3u
2
1)
2
c
3
, c
10
u
20
+ 3u
19
+ ··· 8u
2
1
c
5
u
20
+ 8u
14
52u
12
138u
10
+ 104u
8
+ 527u
6
+ 296u
4
356u
2
319
c
6
, c
9
u
20
8u
18
+ ··· u 1
c
7
, c
11
u
20
3u
19
+ ··· 8u
2
1
c
8
(u
10
5u
8
+ 8u
6
4u
5
6u
4
+ 3u
3
+ 3u
2
1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
y
20
16y
19
+ ··· 13y + 1
c
2
, c
8
(y
10
10y
9
+ ··· 6y + 1)
2
c
3
, c
7
, c
10
c
11
y
20
+ 13y
19
+ ··· + 16y + 1
c
5
(y
10
+ 8y
7
52y
6
138y
5
+ 104y
4
+ 527y
3
+ 296y
2
356y 319)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.006880 + 0.379394I
a = 0.71131 + 2.12605I
b = 0.406554 1.044110I
5.60500 + 3.07077I 11.10306 5.53745I
u = 1.006880 0.379394I
a = 0.71131 2.12605I
b = 0.406554 + 1.044110I
5.60500 3.07077I 11.10306 + 5.53745I
u = 0.307724 + 0.858449I
a = 0.579281 + 0.822097I
b = 0.301268 1.054370I
3.58542 5.93598 + 0.I
u = 0.307724 0.858449I
a = 0.579281 0.822097I
b = 0.301268 + 1.054370I
3.58542 5.93598 + 0.I
u = 1.005260 + 0.622930I
a = 0.917585 0.950908I
b = 0.723749 + 0.881883I
2.31904 + 5.08447I 9.51292 2.92589I
u = 1.005260 0.622930I
a = 0.917585 + 0.950908I
b = 0.723749 0.881883I
2.31904 5.08447I 9.51292 + 2.92589I
u = 0.543411 + 0.587321I
a = 0.318117 + 0.503113I
b = 0.424021 1.175640I
3.51176 5.53076 + 0.I
u = 0.543411 0.587321I
a = 0.318117 0.503113I
b = 0.424021 + 1.175640I
3.51176 5.53076 + 0.I
u = 0.641197 + 0.460705I
a = 1.60910 2.98924I
b = 0.265764 + 0.633820I
1.76138 5.90098I 8.4456 + 11.9708I
u = 0.641197 0.460705I
a = 1.60910 + 2.98924I
b = 0.265764 0.633820I
1.76138 + 5.90098I 8.4456 11.9708I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.22178
a = 0.206592
b = 1.34573
6.32941 27.2570
u = 0.721984
a = 2.63740
b = 0.842412
6.32941 27.2570
u = 1.322280 + 0.225447I
a = 0.769082 + 0.973657I
b = 0.528515 1.268130I
1.76138 5.90098I 8.4456 + 11.9708I
u = 1.322280 0.225447I
a = 0.769082 0.973657I
b = 0.528515 + 1.268130I
1.76138 + 5.90098I 8.4456 11.9708I
u = 1.361800 + 0.242619I
a = 0.490712 + 0.349688I
b = 0.255308 + 0.676358I
7.12244 10.15337 + 0.I
u = 1.361800 0.242619I
a = 0.490712 0.349688I
b = 0.255308 0.676358I
7.12244 10.15337 + 0.I
u = 0.502690 + 0.120984I
a = 0.432595 + 0.041333I
b = 0.14840 1.42580I
2.31904 5.08447I 9.51292 + 2.92589I
u = 0.502690 0.120984I
a = 0.432595 0.041333I
b = 0.14840 + 1.42580I
2.31904 + 5.08447I 9.51292 2.92589I
u = 1.50902 + 0.12166I
a = 0.688432 0.075728I
b = 0.050017 0.545597I
5.60500 + 3.07077I 11.10306 5.53745I
u = 1.50902 0.12166I
a = 0.688432 + 0.075728I
b = 0.050017 + 0.545597I
5.60500 3.07077I 11.10306 + 5.53745I
20
IV. I
u
4
= hu
3
+ b + 1, u
2
+ a + u, u
4
+ u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
1
=
u
2
u
u
3
1
a
10
=
u
u
3
+ u
a
3
=
u
u
3
u
2
1
a
8
=
u
3
u + 1
a
2
=
u
2
1
a
7
=
u
3
+ 1
u
2
+ u
a
11
=
u
3
u
2
u 1
u
3
1
a
6
=
1
u
2
a
6
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
2u
2
+ 3u 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
4
+ u 1
c
2
u
4
2u
2
+ u + 1
c
3
, c
10
u
4
+ u
3
1
c
5
u
4
c
6
, c
9
u
4
u 1
c
7
, c
11
u
4
u
3
1
c
8
u
4
2u
2
u + 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
y
4
2y
2
y + 1
c
2
, c
8
y
4
4y
3
+ 6y
2
5y + 1
c
3
, c
7
, c
10
c
11
y
4
y
3
2y
2
+ 1
c
5
y
4
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.248126 + 1.033980I
a = 0.75943 1.54710I
b = 0.219447 + 0.914474I
3.04135 + 1.96274I 6.36273 1.58218I
u = 0.248126 1.033980I
a = 0.75943 + 1.54710I
b = 0.219447 0.914474I
3.04135 1.96274I 6.36273 + 1.58218I
u = 1.22074
a = 0.269472
b = 0.819173
8.36260 19.9190
u = 0.724492
a = 1.24938
b = 1.38028
4.29983 3.35520
24
V. I
u
5
= h638u
11
606u
10
+ · · · + 697b 1440, 936u
11
+ 352u
10
+ · · · +
697a 1503, u
12
2u
10
+ · · · 2u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
1
=
1.34290u
11
0.505022u
10
+ ··· 9.29412u + 2.15638
0.915352u
11
+ 0.869440u
10
+ ··· + 0.352941u + 2.06600
a
10
=
u
u
3
+ u
a
3
=
u
11
2u
9
+ u
8
5u
6
+ 6u
5
+ u
4
9u
3
+ 5u
2
+ 6u 2
0.348637u
11
+ 0.208034u
10
+ ··· + 1.47059u 1.05022
a
8
=
u
11
2u
9
+ u
8
5u
6
+ 6u
5
+ u
4
9u
3
+ 5u
2
+ 6u 2
0.348637u
11
+ 0.208034u
10
+ ··· + 2.47059u 1.05022
a
2
=
0
u
a
7
=
0.984218u
11
+ 0.566714u
10
+ ··· + 7.76471u 1.79197
0.286944u
11
+ 0.150646u
10
+ ··· + 1.82353u 0.691535
a
11
=
2.25825u
11
+ 0.364419u
10
+ ··· 8.94118u + 4.22238
0.915352u
11
+ 0.869440u
10
+ ··· + 0.352941u + 2.06600
a
6
=
0.984218u
11
0.566714u
10
+ ··· 7.76471u + 1.79197
0.364419u
11
+ 0.358680u
10
+ ··· + 0.294118u + 1.25825
a
6
=
0.984218u
11
0.566714u
10
+ ··· 7.76471u + 1.79197
0.364419u
11
+ 0.358680u
10
+ ··· + 0.294118u + 1.25825
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
9
u
12
2u
10
+ u
9
5u
7
+ 6u
6
+ u
5
9u
4
+ 5u
3
+ 6u
2
2u 1
c
2
, c
8
(u 1)
12
c
3
, c
7
, c
10
c
11
u
12
+ 2u
10
+ u
9
+ 5u
7
4u
6
+ u
5
u
4
3u
3
4u + 1
c
5
(u
6
+ 2u
3
5u
2
+ 1)
2
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
y
12
4y
11
+ ··· 16y + 1
c
2
, c
8
(y 1)
12
c
3
, c
7
, c
10
c
11
y
12
+ 4y
11
+ ··· 16y + 1
c
5
(y
6
10y
4
2y
3
+ 25y
2
10y + 1)
2
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.721680 + 0.842764I
a = 0.291320 + 0.594026I
b = 0.653624 1.017120I
2.30291 14.0000
u = 0.721680 0.842764I
a = 0.291320 0.594026I
b = 0.653624 + 1.017120I
2.30291 14.0000
u = 1.13635
a = 0.0899500
b = 1.33394
5.59278 14.0000
u = 0.849985 + 0.107756I
a = 0.39789 + 1.38066I
b = 0.31772 1.47138I
2.30291 14.0000
u = 0.849985 0.107756I
a = 0.39789 1.38066I
b = 0.31772 + 1.47138I
2.30291 14.0000
u = 1.32540
a = 0.253927
b = 0.966860
5.59278 14.0000
u = 0.128305 + 1.331900I
a = 0.380195 1.282920I
b = 0.335906 + 0.823161I
2.30291 14.0000
u = 0.128305 1.331900I
a = 0.380195 + 1.282920I
b = 0.335906 0.823161I
2.30291 14.0000
u = 0.580134
a = 3.02808
b = 0.239009
5.59278 14.0000
u = 1.36109 + 0.59989I
a = 0.47553 + 1.40936I
b = 0.519889 0.970639I
5.59278 14.0000
28
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.36109 0.59989I
a = 0.47553 1.40936I
b = 0.519889 + 0.970639I
5.59278 14.0000
u = 0.319710
a = 4.03893
b = 1.02201
5.59278 14.0000
29
VI. I
u
6
= hb + 1, a + 1, u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
1
a
5
=
1
1
a
1
=
1
1
a
10
=
1
0
a
3
=
0
1
a
8
=
0
1
a
2
=
0
1
a
7
=
1
1
a
11
=
2
1
a
6
=
1
0
a
6
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
9
u 1
c
2
, c
8
u
c
3
, c
7
, c
10
c
11
u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y 1
c
2
, c
8
y
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
4.93480 18.0000
33
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
(u 1)(u
4
+ u 1)
· (u
12
2u
10
+ u
9
5u
7
+ 6u
6
+ u
5
9u
4
+ 5u
3
+ 6u
2
2u 1)
· (u
18
+ u
17
+ ··· + u
2
1)(u
20
8u
18
+ ··· + u 1)
· (u
60
u
59
+ ··· 109u + 17)
c
2
u(u 1)
12
(u
4
2u
2
+ u + 1)
· (u
10
5u
8
+ 8u
6
+ 4u
5
6u
4
3u
3
+ 3u
2
1)
2
· (u
18
+ u
17
+ ··· + 50u + 4)(u
30
+ 6u
29
+ ··· + 170u + 36)
2
c
3
, c
10
(u + 1)(u
4
+ u
3
1)(u
12
+ 2u
10
+ ··· 4u + 1)
· (u
18
2u
17
+ ··· + 3u + 1)(u
20
+ 3u
19
+ ··· 8u
2
1)
· (u
60
2u
59
+ ··· + 2u 1)
c
5
u
4
(u 1)(u
6
+ 2u
3
5u
2
+ 1)
2
(u
18
+ 6u
17
+ ··· 416u 64)
· (u
20
+ 8u
14
52u
12
138u
10
+ 104u
8
+ 527u
6
+ 296u
4
356u
2
319)
· (u
30
2u
29
+ ··· + 2u 1)
2
c
6
, c
9
(u 1)(u
4
u 1)
· (u
12
2u
10
+ u
9
5u
7
+ 6u
6
+ u
5
9u
4
+ 5u
3
+ 6u
2
2u 1)
· (u
18
+ u
17
+ ··· + u
2
1)(u
20
8u
18
+ ··· u 1)
· (u
60
u
59
+ ··· 109u + 17)
c
7
, c
11
(u + 1)(u
4
u
3
1)(u
12
+ 2u
10
+ ··· 4u + 1)
· (u
18
2u
17
+ ··· + 3u + 1)(u
20
3u
19
+ ··· 8u
2
1)
· (u
60
2u
59
+ ··· + 2u 1)
c
8
u(u 1)
12
(u
4
2u
2
u + 1)
· (u
10
5u
8
+ 8u
6
4u
5
6u
4
+ 3u
3
+ 3u
2
1)
2
· (u
18
+ u
17
+ ··· + 50u + 4)(u
30
+ 6u
29
+ ··· + 170u + 36)
2
34
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
9
(y 1)(y
4
2y
2
y + 1)(y
12
4y
11
+ ··· 16y + 1)
· (y
18
11y
17
+ ··· 2y + 1)(y
20
16y
19
+ ··· 13y + 1)
· (y
60
41y
59
+ ··· 18409y + 289)
c
2
, c
8
y(y 1)
12
(y
4
4y
3
+ ··· 5y + 1)(y
10
10y
9
+ ··· 6y + 1)
2
· (y
18
13y
17
+ ··· 1100y + 16)(y
30
22y
29
+ ··· 460y + 1296)
2
c
3
, c
7
, c
10
c
11
(y 1)(y
4
y
3
2y
2
+ 1)(y
12
+ 4y
11
+ ··· 16y + 1)
· (y
18
+ 8y
17
+ ··· 9y + 1)(y
20
+ 13y
19
+ ··· + 16y + 1)
· (y
60
+ 32y
59
+ ··· + 20y + 1)
c
5
y
4
(y 1)(y
6
10y
4
2y
3
+ 25y
2
10y + 1)
2
· (y
10
+ 8y
7
52y
6
138y
5
+ 104y
4
+ 527y
3
+ 296y
2
356y 319)
2
· (y
18
+ 56y
16
+ ··· 37888y + 4096)(y
30
2y
29
+ ··· 84y + 1)
2
35