11a
319
(K11a
319
)
A knot diagram
1
Linearized knot diagam
8 6 1 9 10 2 11 3 5 7 4
Solving Sequence
4,9
5 10
1,6
3 2 8 11 7
c
4
c
9
c
5
c
3
c
2
c
8
c
11
c
7
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.02320 × 10
126
u
75
1.11777 × 10
126
u
74
+ ··· + 3.99495 × 10
125
b 2.42597 × 10
127
,
1.55725 × 10
127
u
75
6.75726 × 10
126
u
74
+ ··· + 4.39445 × 10
126
a 1.20832 × 10
128
,
u
76
u
75
+ ··· + 20u 11i
I
u
2
= hu
14
8u
12
+ 2u
11
+ 24u
10
12u
9
31u
8
+ 25u
7
+ 12u
6
20u
5
+ 6u
4
+ 4u
3
4u
2
+ b + u + 1,
u
7
5u
5
+ u
4
+ 7u
3
3u
2
+ a 2u + 2, u
17
10u
15
+ ··· 4u + 1i
* 2 irreducible components of dim
C
= 0, with total 93 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.02 × 10
126
u
75
1.12 × 10
126
u
74
+ · · · + 3.99 × 10
125
b 2.43 ×
10
127
, 1.56 × 10
127
u
75
6.76 × 10
126
u
74
+ · · · + 4.39 × 10
126
a 1.21 ×
10
128
, u
76
u
75
+ · · · + 20u 11i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
10
=
u
u
3
+ u
a
1
=
3.54367u
75
+ 1.53768u
74
+ ··· 35.9783u + 27.4965
7.56756u
75
+ 2.79795u
74
+ ··· 67.2178u + 60.7258
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
5.63330u
75
2.05372u
74
+ ··· + 46.7663u 43.7933
1.63145u
75
0.0719719u
74
+ ··· + 15.8051u 16.2500
a
2
=
6.48406u
75
2.02652u
74
+ ··· + 54.0242u 53.0924
0.680076u
75
+ 0.626654u
74
+ ··· 5.15979u + 3.31366
a
8
=
5.69380u
75
2.66010u
74
+ ··· + 46.9149u 40.6325
5.61367u
75
2.27578u
74
+ ··· + 50.6262u 43.0534
a
11
=
11.1112u
75
+ 4.33563u
74
+ ··· 103.196u + 88.2222
7.56756u
75
+ 2.79795u
74
+ ··· 67.2178u + 60.7258
a
7
=
12.8280u
75
5.10092u
74
+ ··· + 116.740u 101.789
9.74429u
75
3.51162u
74
+ ··· + 86.7191u 78.0492
a
7
=
12.8280u
75
5.10092u
74
+ ··· + 116.740u 101.789
9.74429u
75
3.51162u
74
+ ··· + 86.7191u 78.0492
(ii) Obstruction class = 1
(iii) Cusp Shapes = 17.3913u
75
+ 5.44974u
74
+ ··· 141.033u + 132.140
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
76
u
75
+ ··· + 412u 8
c
2
, c
6
u
76
+ 2u
75
+ ··· 3u 1
c
3
, c
11
u
76
2u
75
+ ··· 9u + 1
c
4
, c
5
, c
9
u
76
u
75
+ ··· + 20u 11
c
7
, c
10
u
76
27u
74
+ ··· + 87u + 89
c
8
u
76
+ u
75
+ ··· 656u 71
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
76
+ 7y
75
+ ··· 193744y + 64
c
2
, c
6
y
76
+ 38y
75
+ ··· + 9y + 1
c
3
, c
11
y
76
+ 38y
75
+ ··· 35y + 1
c
4
, c
5
, c
9
y
76
77y
75
+ ··· 1918y + 121
c
7
, c
10
y
76
54y
75
+ ··· 315687y + 7921
c
8
y
76
+ 3y
75
+ ··· + 35282y + 5041
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.389612 + 0.916154I
a = 0.592515 1.155730I
b = 0.401944 + 1.052230I
0.62066 + 1.50555I 0
u = 0.389612 0.916154I
a = 0.592515 + 1.155730I
b = 0.401944 1.052230I
0.62066 1.50555I 0
u = 0.823395 + 0.409350I
a = 1.05402 + 1.27829I
b = 0.263172 0.984227I
4.83635 + 1.37448I 0
u = 0.823395 0.409350I
a = 1.05402 1.27829I
b = 0.263172 + 0.984227I
4.83635 1.37448I 0
u = 0.483501 + 0.974155I
a = 0.45679 + 1.67940I
b = 0.550419 1.214740I
2.29106 + 11.42070I 0
u = 0.483501 0.974155I
a = 0.45679 1.67940I
b = 0.550419 + 1.214740I
2.29106 11.42070I 0
u = 0.424777 + 0.743415I
a = 0.237044 0.126527I
b = 0.926094 + 0.184524I
0.84401 + 6.11908I 11.00000 6.39496I
u = 0.424777 0.743415I
a = 0.237044 + 0.126527I
b = 0.926094 0.184524I
0.84401 6.11908I 11.00000 + 6.39496I
u = 0.814292 + 0.244342I
a = 1.026810 + 0.480678I
b = 0.092563 0.921471I
0.099237 + 0.900566I 11.00000 + 0.I
u = 0.814292 0.244342I
a = 1.026810 0.480678I
b = 0.092563 + 0.921471I
0.099237 0.900566I 11.00000 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.176061 + 0.818582I
a = 0.40528 + 1.71607I
b = 0.156652 0.429229I
1.33166 1.72547I 14.8473 + 4.3130I
u = 0.176061 0.818582I
a = 0.40528 1.71607I
b = 0.156652 + 0.429229I
1.33166 + 1.72547I 14.8473 4.3130I
u = 0.543220 + 0.596118I
a = 0.72897 + 1.68729I
b = 0.578793 1.217190I
0.40362 6.16038I 12.6367 + 6.4189I
u = 0.543220 0.596118I
a = 0.72897 1.68729I
b = 0.578793 + 1.217190I
0.40362 + 6.16038I 12.6367 6.4189I
u = 0.403956 + 0.694531I
a = 0.73517 2.36579I
b = 0.385169 + 1.155850I
5.95784 5.41839I 4.91437 + 6.37990I
u = 0.403956 0.694531I
a = 0.73517 + 2.36579I
b = 0.385169 1.155850I
5.95784 + 5.41839I 4.91437 6.37990I
u = 0.015418 + 0.764248I
a = 0.31937 1.71331I
b = 0.256820 + 1.279050I
4.17534 + 2.02937I 5.35264 3.44939I
u = 0.015418 0.764248I
a = 0.31937 + 1.71331I
b = 0.256820 1.279050I
4.17534 2.02937I 5.35264 + 3.44939I
u = 1.183710 + 0.358531I
a = 1.199420 + 0.565118I
b = 0.548063 1.068230I
0.57865 + 2.05556I 0
u = 1.183710 0.358531I
a = 1.199420 0.565118I
b = 0.548063 + 1.068230I
0.57865 2.05556I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.251120 + 0.248625I
a = 0.239750 + 0.761391I
b = 0.04156 1.45310I
0.32319 5.68921I 0
u = 1.251120 0.248625I
a = 0.239750 0.761391I
b = 0.04156 + 1.45310I
0.32319 + 5.68921I 0
u = 1.28115
a = 0.459645
b = 1.47825
6.35187 0
u = 0.415404 + 0.582852I
a = 0.68270 + 1.54587I
b = 0.204358 0.032720I
1.28370 1.66052I 14.5329 + 1.9841I
u = 0.415404 0.582852I
a = 0.68270 1.54587I
b = 0.204358 + 0.032720I
1.28370 + 1.66052I 14.5329 1.9841I
u = 0.890446 + 0.929837I
a = 0.353070 0.943896I
b = 0.423475 + 1.099500I
1.26015 5.05770I 0
u = 0.890446 0.929837I
a = 0.353070 + 0.943896I
b = 0.423475 1.099500I
1.26015 + 5.05770I 0
u = 1.283810 + 0.130212I
a = 0.118830 0.700349I
b = 0.369265 + 1.250970I
0.441238 0.180661I 0
u = 1.283810 0.130212I
a = 0.118830 + 0.700349I
b = 0.369265 1.250970I
0.441238 + 0.180661I 0
u = 1.266800 + 0.325823I
a = 0.765340 + 1.058530I
b = 0.566425 1.234630I
1.94552 5.55310I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.266800 0.325823I
a = 0.765340 1.058530I
b = 0.566425 + 1.234630I
1.94552 + 5.55310I 0
u = 0.444836 + 0.522365I
a = 0.398098 0.467252I
b = 0.596050 + 0.039922I
2.60495 1.78296I 8.00353 + 3.87013I
u = 0.444836 0.522365I
a = 0.398098 + 0.467252I
b = 0.596050 0.039922I
2.60495 + 1.78296I 8.00353 3.87013I
u = 1.311600 + 0.103518I
a = 1.03048 + 1.21009I
b = 0.514398 1.236890I
1.92305 4.87099I 0
u = 1.311600 0.103518I
a = 1.03048 1.21009I
b = 0.514398 + 1.236890I
1.92305 + 4.87099I 0
u = 1.349720 + 0.065820I
a = 1.217170 0.101012I
b = 0.870938 + 1.013400I
0.77408 3.35704I 0
u = 1.349720 0.065820I
a = 1.217170 + 0.101012I
b = 0.870938 1.013400I
0.77408 + 3.35704I 0
u = 1.350640 + 0.063400I
a = 0.176995 0.118422I
b = 0.931081 + 0.000401I
5.57637 0.20639I 0
u = 1.350640 0.063400I
a = 0.176995 + 0.118422I
b = 0.931081 0.000401I
5.57637 + 0.20639I 0
u = 1.357900 + 0.043884I
a = 1.79725 + 1.15210I
b = 0.387768 0.909786I
5.22695 + 2.29906I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.357900 0.043884I
a = 1.79725 1.15210I
b = 0.387768 + 0.909786I
5.22695 2.29906I 0
u = 0.122694 + 0.619434I
a = 0.10445 2.19105I
b = 0.296199 + 1.106080I
2.14249 + 2.23159I 8.54552 3.67223I
u = 0.122694 0.619434I
a = 0.10445 + 2.19105I
b = 0.296199 1.106080I
2.14249 2.23159I 8.54552 + 3.67223I
u = 1.44891 + 0.14080I
a = 0.481123 0.199172I
b = 1.224630 0.584901I
9.34391 + 2.22180I 0
u = 1.44891 0.14080I
a = 0.481123 + 0.199172I
b = 1.224630 + 0.584901I
9.34391 2.22180I 0
u = 1.47061 + 0.16030I
a = 0.306582 + 0.332343I
b = 0.822237 + 0.047329I
3.60983 + 4.19667I 0
u = 1.47061 0.16030I
a = 0.306582 0.332343I
b = 0.822237 0.047329I
3.60983 4.19667I 0
u = 1.41933 + 0.42065I
a = 0.67180 1.40557I
b = 0.442929 + 0.884817I
5.65001 + 6.63038I 0
u = 1.41933 0.42065I
a = 0.67180 + 1.40557I
b = 0.442929 0.884817I
5.65001 6.63038I 0
u = 1.50726 + 0.09538I
a = 0.602552 + 0.769876I
b = 0.338449 + 0.760870I
5.76261 + 5.49552I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.50726 0.09538I
a = 0.602552 0.769876I
b = 0.338449 0.760870I
5.76261 5.49552I 0
u = 1.48612 + 0.28014I
a = 0.298246 0.283277I
b = 1.119880 0.368135I
7.01934 9.87112I 0
u = 1.48612 0.28014I
a = 0.298246 + 0.283277I
b = 1.119880 + 0.368135I
7.01934 + 9.87112I 0
u = 1.49359 + 0.25146I
a = 1.21705 + 1.14348I
b = 0.486385 1.199380I
0.24612 + 8.87181I 0
u = 1.49359 0.25146I
a = 1.21705 1.14348I
b = 0.486385 + 1.199380I
0.24612 8.87181I 0
u = 1.50705 + 0.22242I
a = 1.051270 0.758406I
b = 0.75035 + 1.23699I
7.04703 + 9.23303I 0
u = 1.50705 0.22242I
a = 1.051270 + 0.758406I
b = 0.75035 1.23699I
7.04703 9.23303I 0
u = 0.360949 + 0.309680I
a = 0.180409 + 0.096738I
b = 1.096150 + 0.295785I
3.43137 0.38386I 15.2643 + 10.3620I
u = 0.360949 0.309680I
a = 0.180409 0.096738I
b = 1.096150 0.295785I
3.43137 + 0.38386I 15.2643 10.3620I
u = 0.417296 + 0.152664I
a = 0.84873 1.85322I
b = 0.341529 1.042830I
0.75348 4.33489I 11.2955 + 8.9006I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.417296 0.152664I
a = 0.84873 + 1.85322I
b = 0.341529 + 1.042830I
0.75348 + 4.33489I 11.2955 8.9006I
u = 1.56105 + 0.14869I
a = 0.992041 0.886508I
b = 0.411088 + 0.863529I
8.50171 1.93111I 0
u = 1.56105 0.14869I
a = 0.992041 + 0.886508I
b = 0.411088 0.863529I
8.50171 + 1.93111I 0
u = 1.53973 + 0.35591I
a = 1.07371 0.98960I
b = 0.672388 + 1.243770I
4.2259 16.2332I 0
u = 1.53973 0.35591I
a = 1.07371 + 0.98960I
b = 0.672388 1.243770I
4.2259 + 16.2332I 0
u = 1.57933 + 0.28128I
a = 0.128178 + 0.124917I
b = 0.405226 0.753491I
6.09912 + 3.01607I 0
u = 1.57933 0.28128I
a = 0.128178 0.124917I
b = 0.405226 + 0.753491I
6.09912 3.01607I 0
u = 1.63371 + 0.02501I
a = 1.034860 0.164822I
b = 0.371504 + 0.828903I
8.60907 1.62605I 0
u = 1.63371 0.02501I
a = 1.034860 + 0.164822I
b = 0.371504 0.828903I
8.60907 + 1.62605I 0
u = 0.116708 + 0.338520I
a = 0.11659 + 3.10251I
b = 0.577872 1.070210I
4.88852 + 2.19681I 2.89903 5.12791I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.116708 0.338520I
a = 0.11659 3.10251I
b = 0.577872 + 1.070210I
4.88852 2.19681I 2.89903 + 5.12791I
u = 0.288819 + 0.196852I
a = 3.36414 + 3.48302I
b = 0.013597 + 0.532558I
1.19588 1.58823I 17.1201 + 3.8590I
u = 0.288819 0.196852I
a = 3.36414 3.48302I
b = 0.013597 0.532558I
1.19588 + 1.58823I 17.1201 3.8590I
u = 0.342111
a = 0.739155
b = 0.232162
0.544579 18.2820
u = 1.66294 + 0.03279I
a = 0.499176 + 0.154210I
b = 0.395150 0.796004I
8.73345 + 1.51887I 0
u = 1.66294 0.03279I
a = 0.499176 0.154210I
b = 0.395150 + 0.796004I
8.73345 1.51887I 0
12
II. I
u
2
= hu
14
8u
12
+ · · · + b + 1, u
7
5u
5
+ u
4
+ 7u
3
3u
2
+ a 2u +
2, u
17
10u
15
+ · · · 4u + 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
10
=
u
u
3
+ u
a
1
=
u
7
+ 5u
5
u
4
7u
3
+ 3u
2
+ 2u 2
u
14
+ 8u
12
+ ··· u 1
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
16
9u
14
+ ··· + 4u
2
3u
u
15
u
14
+ ··· u 1
a
2
=
u
16
9u
14
+ ··· 3u 1
u
14
u
13
+ ··· + 3u 2
a
8
=
u
7
+ 4u
5
u
4
4u
3
+ 2u
2
u
9
+ 5u
7
u
6
7u
5
+ 3u
4
+ u
3
2u
2
+ 2u
a
11
=
u
14
+ 8u
12
+ ··· + u 3
u
14
+ 8u
12
+ ··· u 1
a
7
=
u
16
+ 9u
14
+ ··· u + 3
u
16
+ 9u
14
+ ··· + 3u + 1
a
7
=
u
16
+ 9u
14
+ ··· u + 3
u
16
+ 9u
14
+ ··· + 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
16
6u
15
+ 68u
14
+ 38u
13
232u
12
80u
11
+ 401u
10
+
31u
9
372u
8
+ 111u
7
+ 181u
6
152u
5
23u
4
+ 59u
3
36u
2
11u 1
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
+ 4u
14
+ ··· 2u + 1
c
2
u
17
+ u
16
+ ··· u 1
c
3
u
17
+ 3u
16
+ ··· + 3u + 1
c
4
, c
5
u
17
10u
15
+ ··· 4u + 1
c
6
u
17
u
16
+ ··· u + 1
c
7
u
17
+ 3u
16
+ ··· 3u 1
c
8
u
17
+ 4u
14
+ ··· 8u + 1
c
9
u
17
10u
15
+ ··· 4u 1
c
10
u
17
3u
16
+ ··· 3u + 1
c
11
u
17
3u
16
+ ··· + 3u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
8y
15
+ ··· + 12y 1
c
2
, c
6
y
17
+ 11y
16
+ ··· 11y 1
c
3
, c
11
y
17
+ 7y
16
+ ··· 11y 1
c
4
, c
5
, c
9
y
17
20y
16
+ ··· + 20y 1
c
7
, c
10
y
17
17y
16
+ ··· + 13y 1
c
8
y
17
+ 12y
14
+ ··· + 64y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.200720 + 0.109093I
a = 1.259920 + 0.268542I
b = 0.788681 1.049830I
2.07326 + 3.18618I 7.67391 3.38689I
u = 1.200720 0.109093I
a = 1.259920 0.268542I
b = 0.788681 + 1.049830I
2.07326 3.18618I 7.67391 + 3.38689I
u = 0.553379 + 0.552607I
a = 0.682149 0.336978I
b = 0.309893 + 1.117580I
1.20372 + 3.19075I 7.96599 2.39648I
u = 0.553379 0.552607I
a = 0.682149 + 0.336978I
b = 0.309893 1.117580I
1.20372 3.19075I 7.96599 + 2.39648I
u = 1.27911
a = 0.341691
b = 1.46681
6.61379 33.2250
u = 1.263050 + 0.263271I
a = 0.592609 + 1.202030I
b = 0.460993 1.319570I
1.45094 6.17034I 11.3383 + 10.2345I
u = 1.263050 0.263271I
a = 0.592609 1.202030I
b = 0.460993 + 1.319570I
1.45094 + 6.17034I 11.3383 10.2345I
u = 0.651996 + 0.211857I
a = 0.94777 1.32012I
b = 0.470492 + 0.965476I
4.14519 1.98743I 14.0690 + 3.3402I
u = 0.651996 0.211857I
a = 0.94777 + 1.32012I
b = 0.470492 0.965476I
4.14519 + 1.98743I 14.0690 3.3402I
u = 0.217192 + 0.632961I
a = 0.20677 + 3.33767I
b = 0.098692 0.746992I
0.60133 + 1.33639I 4.28642 + 1.58322I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.217192 0.632961I
a = 0.20677 3.33767I
b = 0.098692 + 0.746992I
0.60133 1.33639I 4.28642 1.58322I
u = 1.49154 + 0.19389I
a = 1.012630 + 0.072484I
b = 0.052423 + 0.594313I
5.52510 4.39406I 11.92932 + 2.85111I
u = 1.49154 0.19389I
a = 1.012630 0.072484I
b = 0.052423 0.594313I
5.52510 + 4.39406I 11.92932 2.85111I
u = 1.52069
a = 0.690467
b = 0.725037
9.46726 17.7890
u = 1.68068 + 0.05321I
a = 0.989858 0.336035I
b = 0.311616 + 0.857754I
8.31921 + 1.40875I 3.00892 + 5.68354I
u = 1.68068 0.05321I
a = 0.989858 + 0.336035I
b = 0.311616 0.857754I
8.31921 1.40875I 3.00892 5.68354I
u = 0.258035
a = 1.40324
b = 1.06896
3.15865 5.44230
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
+ 4u
14
+ ··· 2u + 1)(u
76
u
75
+ ··· + 412u 8)
c
2
(u
17
+ u
16
+ ··· u 1)(u
76
+ 2u
75
+ ··· 3u 1)
c
3
(u
17
+ 3u
16
+ ··· + 3u + 1)(u
76
2u
75
+ ··· 9u + 1)
c
4
, c
5
(u
17
10u
15
+ ··· 4u + 1)(u
76
u
75
+ ··· + 20u 11)
c
6
(u
17
u
16
+ ··· u + 1)(u
76
+ 2u
75
+ ··· 3u 1)
c
7
(u
17
+ 3u
16
+ ··· 3u 1)(u
76
27u
74
+ ··· + 87u + 89)
c
8
(u
17
+ 4u
14
+ ··· 8u + 1)(u
76
+ u
75
+ ··· 656u 71)
c
9
(u
17
10u
15
+ ··· 4u 1)(u
76
u
75
+ ··· + 20u 11)
c
10
(u
17
3u
16
+ ··· 3u + 1)(u
76
27u
74
+ ··· + 87u + 89)
c
11
(u
17
3u
16
+ ··· + 3u 1)(u
76
2u
75
+ ··· 9u + 1)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
8y
15
+ ··· + 12y 1)(y
76
+ 7y
75
+ ··· 193744y + 64)
c
2
, c
6
(y
17
+ 11y
16
+ ··· 11y 1)(y
76
+ 38y
75
+ ··· + 9y + 1)
c
3
, c
11
(y
17
+ 7y
16
+ ··· 11y 1)(y
76
+ 38y
75
+ ··· 35y + 1)
c
4
, c
5
, c
9
(y
17
20y
16
+ ··· + 20y 1)(y
76
77y
75
+ ··· 1918y + 121)
c
7
, c
10
(y
17
17y
16
+ ··· + 13y 1)(y
76
54y
75
+ ··· 315687y + 7921)
c
8
(y
17
+ 12y
14
+ ··· + 64y 1)(y
76
+ 3y
75
+ ··· + 35282y + 5041)
19