11a
329
(K11a
329
)
A knot diagram
1
Linearized knot diagam
9 6 1 8 10 2 5 11 3 7 4
Solving Sequence
4,8 5,11
9 1 2 3 7 6 10
c
4
c
8
c
11
c
1
c
3
c
7
c
6
c
10
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 7480949u
26
+ 102501940u
25
+ ··· + 35850519a + 58313900, u
27
+ u
26
+ ··· + 4u 1i
I
u
2
= h−1.25488 × 10
119
u
63
5.93390 × 10
119
u
62
+ ··· + 1.36032 × 10
119
b 4.57609 × 10
119
,
7.61826 × 10
119
u
63
3.45060 × 10
120
u
62
+ ··· + 4.08097 × 10
119
a + 8.20476 × 10
119
,
u
64
+ 5u
63
+ ··· + 9u + 1i
I
u
3
= hb + u, u
2
+ a + u, u
3
+ u 1i
I
u
4
= hb + u, 2u
7
+ u
6
7u
5
+ u
4
10u
3
+ a 7u, u
8
u
7
+ 4u
6
2u
5
+ 6u
4
2u
3
+ 5u
2
u + 1i
I
u
5
= hu
6
u
5
+ 3u
4
7u
3
+ 6u
2
+ 2b 10u + 5, 5u
7
22u
5
+ 12u
4
41u
3
+ 24u
2
+ 6a 27u + 11,
u
8
+ 5u
6
3u
5
+ 10u
4
9u
3
+ 9u
2
7u + 3i
* 5 irreducible components of dim
C
= 0, with total 110 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 7.48 × 10
6
u
26
+ 1.03 × 10
8
u
25
+ · · · + 3.59 × 10
7
a + 5.83 ×
10
7
, u
27
+ u
26
+ · · · + 4u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
11
=
0.208671u
26
2.85915u
25
+ ··· + 7.44217u 1.62658
u
a
9
=
3.27801u
26
+ 5.32766u
25
+ ··· + 46.4586u 8.94242
1.20999u
26
3.00055u
25
+ ··· 9.39324u + 2.65048
a
1
=
0.208671u
26
2.85915u
25
+ ··· + 6.44217u 1.62658
u
a
2
=
2.58876u
26
0.102742u
25
+ ··· 3.92105u 2.07685
0.977408u
26
+ 0.220438u
25
+ ··· 3.89929u + 0.517993
a
3
=
2.65048u
26
+ 3.86047u
25
+ ··· + 0.791902u + 1.20867
u
2
a
7
=
u
u
3
+ u
a
6
=
3.03935u
26
+ 5.72431u
25
+ ··· + 8.43055u 4.17643
0.810224u
26
2.02363u
25
+ ··· 2.57059u + 0.767074
a
10
=
0.606939u
26
0.979932u
25
+ ··· + 15.1011u 3.18665
0.175698u
26
1.25035u
25
+ ··· 0.849262u + 0.717414
a
10
=
0.606939u
26
0.979932u
25
+ ··· + 15.1011u 3.18665
0.175698u
26
1.25035u
25
+ ··· 0.849262u + 0.717414
(ii) Obstruction class = 1
(iii) Cusp Shapes =
26113891
3983391
u
26
+
16946267
3983391
u
25
+ ···
13443049
442599
u
51593591
3983391
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
27
2u
26
+ ··· 10u + 3
c
2
, c
6
u
27
+ 8u
26
+ ··· + 110u + 12
c
3
, c
4
, c
7
c
11
u
27
u
26
+ ··· + 4u + 1
c
5
, c
9
u
27
+ 12u
25
+ ··· + 15u
2
+ 1
c
8
u
27
20u
26
+ ··· 1284u + 180
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
27
+ 4y
26
+ ··· + 4y 9
c
2
, c
6
y
27
+ 14y
26
+ ··· + 700y 144
c
3
, c
4
, c
7
c
11
y
27
+ 27y
26
+ ··· 4y 1
c
5
, c
9
y
27
+ 24y
26
+ ··· 30y 1
c
8
y
27
2y
26
+ ··· + 561816y 32400
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.886580 + 0.019207I
a = 1.057340 + 0.497197I
b = 0.886580 + 0.019207I
0.96030 + 6.99778I 11.49841 6.31594I
u = 0.886580 0.019207I
a = 1.057340 0.497197I
b = 0.886580 0.019207I
0.96030 6.99778I 11.49841 + 6.31594I
u = 0.236028 + 1.095620I
a = 0.798201 + 0.061958I
b = 0.236028 + 1.095620I
4.10301 1.11169I 6.68347 + 2.36909I
u = 0.236028 1.095620I
a = 0.798201 0.061958I
b = 0.236028 1.095620I
4.10301 + 1.11169I 6.68347 2.36909I
u = 0.868007 + 0.115359I
a = 0.768649 0.417549I
b = 0.868007 + 0.115359I
2.19193 + 1.02446I 11.23776 6.18138I
u = 0.868007 0.115359I
a = 0.768649 + 0.417549I
b = 0.868007 0.115359I
2.19193 1.02446I 11.23776 + 6.18138I
u = 0.003006 + 1.229040I
a = 1.65700 1.48184I
b = 0.003006 + 1.229040I
9.55943 + 6.00813I 1.22265 6.13894I
u = 0.003006 1.229040I
a = 1.65700 + 1.48184I
b = 0.003006 1.229040I
9.55943 6.00813I 1.22265 + 6.13894I
u = 0.045846 + 1.255570I
a = 1.24858 0.95153I
b = 0.045846 + 1.255570I
6.76407 1.62647I 5.58254 + 2.60825I
u = 0.045846 1.255570I
a = 1.24858 + 0.95153I
b = 0.045846 1.255570I
6.76407 + 1.62647I 5.58254 2.60825I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.029913 + 1.343500I
a = 0.37553 1.49753I
b = 0.029913 + 1.343500I
9.97119 1.49427I 0.080207 + 0.920031I
u = 0.029913 1.343500I
a = 0.37553 + 1.49753I
b = 0.029913 1.343500I
9.97119 + 1.49427I 0.080207 0.920031I
u = 0.524847 + 1.241400I
a = 0.633730 0.220695I
b = 0.524847 + 1.241400I
2.50522 4.33326I 7.76207 3.39042I
u = 0.524847 1.241400I
a = 0.633730 + 0.220695I
b = 0.524847 1.241400I
2.50522 + 4.33326I 7.76207 + 3.39042I
u = 0.580317 + 0.090563I
a = 0.597417 + 1.252030I
b = 0.580317 + 0.090563I
3.08469 2.64958I 9.08747 + 2.09938I
u = 0.580317 0.090563I
a = 0.597417 1.252030I
b = 0.580317 0.090563I
3.08469 + 2.64958I 9.08747 2.09938I
u = 0.10388 + 1.45531I
a = 0.370550 0.378802I
b = 0.10388 + 1.45531I
10.25310 0.47528I 1.44372 + 0.I
u = 0.10388 1.45531I
a = 0.370550 + 0.378802I
b = 0.10388 1.45531I
10.25310 + 0.47528I 1.44372 + 0.I
u = 0.45771 + 1.48529I
a = 0.908211 0.286969I
b = 0.45771 + 1.48529I
12.64960 + 6.10710I 1.83403 3.86721I
u = 0.45771 1.48529I
a = 0.908211 + 0.286969I
b = 0.45771 1.48529I
12.64960 6.10710I 1.83403 + 3.86721I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.47966 + 1.48279I
a = 1.135590 0.392236I
b = 0.47966 + 1.48279I
10.7046 + 17.4305I 4.97020 8.80041I
u = 0.47966 1.48279I
a = 1.135590 + 0.392236I
b = 0.47966 1.48279I
10.7046 17.4305I 4.97020 + 8.80041I
u = 0.47037 + 1.48644I
a = 1.021560 0.423137I
b = 0.47037 + 1.48644I
7.11389 11.36350I 6.87134 + 6.73077I
u = 0.47037 1.48644I
a = 1.021560 + 0.423137I
b = 0.47037 1.48644I
7.11389 + 11.36350I 6.87134 6.73077I
u = 0.275286
a = 0.867193
b = 0.275286
0.622366 16.1230
u = 0.114320 + 0.213263I
a = 1.14807 + 5.10834I
b = 0.114320 + 0.213263I
1.14394 + 1.30778I 18.3250 4.6536I
u = 0.114320 0.213263I
a = 1.14807 5.10834I
b = 0.114320 0.213263I
1.14394 1.30778I 18.3250 + 4.6536I
7
II. I
u
2
= h−1.25 × 10
119
u
63
5.93 × 10
119
u
62
+ · · · + 1.36 × 10
119
b 4.58 ×
10
119
, 7.62 × 10
119
u
63
3.45 × 10
120
u
62
+ · · · + 4.08 × 10
119
a + 8.20 ×
10
119
, u
64
+ 5u
63
+ · · · + 9u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
11
=
1.86678u
63
+ 8.45535u
62
+ ··· + 13.0919u 2.01050
0.922490u
63
+ 4.36213u
62
+ ··· + 19.0193u + 3.36397
a
9
=
2.07092u
63
9.95817u
62
+ ··· 51.5217u 6.64500
0.765928u
63
3.73638u
62
+ ··· 20.4529u 4.25401
a
1
=
0.944287u
63
+ 4.09322u
62
+ ··· 5.92732u 5.37447
0.922490u
63
+ 4.36213u
62
+ ··· + 19.0193u + 3.36397
a
2
=
1.92058u
63
9.65347u
62
+ ··· 55.0762u 11.3256
0.0555653u
63
+ 0.244446u
62
+ ··· + 4.82412u + 0.229347
a
3
=
5.08294u
63
+ 24.8391u
62
+ ··· + 104.384u + 17.2019
0.828932u
63
4.33500u
62
+ ··· 13.7757u + 0.631299
a
7
=
u
u
3
+ u
a
6
=
3.21107u
63
15.6228u
62
+ ··· 65.7787u 11.6119
0.348757u
63
+ 1.59825u
62
+ ··· + 16.3904u + 1.14200
a
10
=
1.54638u
63
+ 7.15847u
62
+ ··· + 9.16166u 2.57721
0.647718u
63
+ 2.94801u
62
+ ··· + 12.6636u + 2.49217
a
10
=
1.54638u
63
+ 7.15847u
62
+ ··· + 9.16166u 2.57721
0.647718u
63
+ 2.94801u
62
+ ··· + 12.6636u + 2.49217
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.07366u
63
4.33095u
62
+ ··· + 40.1271u + 1.41454
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
64
+ 2u
63
+ ··· 126u + 177
c
2
, c
6
(u
32
3u
31
+ ··· 10u + 3)
2
c
3
, c
4
, c
7
c
11
u
64
5u
63
+ ··· 9u + 1
c
5
, c
9
u
64
u
63
+ ··· 16935u + 15481
c
8
(u
32
+ 10u
31
+ ··· + 99u + 19)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
64
+ 4y
63
+ ··· + 305202y + 31329
c
2
, c
6
(y
32
+ 21y
31
+ ··· + 74y + 9)
2
c
3
, c
4
, c
7
c
11
y
64
+ 49y
63
+ ··· 3y + 1
c
5
, c
9
y
64
+ 11y
63
+ ··· + 3729627377y + 239661361
c
8
(y
32
+ 18y
31
+ ··· + 3461y + 361)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.920222 + 0.395412I
a = 0.129317 + 1.135090I
b = 0.151131 + 1.300520I
3.42651 + 2.86570I 5.40728 4.03056I
u = 0.920222 0.395412I
a = 0.129317 1.135090I
b = 0.151131 1.300520I
3.42651 2.86570I 5.40728 + 4.03056I
u = 0.063212 + 0.940817I
a = 0.717133 + 0.574436I
b = 0.804979 0.202940I
0.168876 + 0.846731I 12.88022 0.77932I
u = 0.063212 0.940817I
a = 0.717133 0.574436I
b = 0.804979 + 0.202940I
0.168876 0.846731I 12.88022 + 0.77932I
u = 0.294249 + 1.039510I
a = 1.105040 + 0.363187I
b = 0.685111 0.128372I
1.25382 4.32436I 0
u = 0.294249 1.039510I
a = 1.105040 0.363187I
b = 0.685111 + 0.128372I
1.25382 + 4.32436I 0
u = 0.804979 + 0.202940I
a = 0.872180 0.573156I
b = 0.063212 0.940817I
0.168876 0.846731I 12.88022 + 0.77932I
u = 0.804979 0.202940I
a = 0.872180 + 0.573156I
b = 0.063212 + 0.940817I
0.168876 + 0.846731I 12.88022 0.77932I
u = 0.271195 + 1.153980I
a = 1.63456 + 0.62464I
b = 0.336277 1.364760I
4.73825 + 4.95632I 0
u = 0.271195 1.153980I
a = 1.63456 0.62464I
b = 0.336277 + 1.364760I
4.73825 4.95632I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.053296 + 1.199700I
a = 0.715928 + 0.774703I
b = 0.42436 1.68610I
5.82389 + 3.48280I 0
u = 0.053296 1.199700I
a = 0.715928 0.774703I
b = 0.42436 + 1.68610I
5.82389 3.48280I 0
u = 0.087790 + 1.202470I
a = 0.397620 + 0.281730I
b = 1.04393 1.82190I
8.11459 + 3.37630I 0
u = 0.087790 1.202470I
a = 0.397620 0.281730I
b = 1.04393 + 1.82190I
8.11459 3.37630I 0
u = 0.612602 + 0.471856I
a = 0.025706 + 1.164300I
b = 0.232794 + 1.231510I
2.52109 1.66996I 6.36037 2.48874I
u = 0.612602 0.471856I
a = 0.025706 1.164300I
b = 0.232794 1.231510I
2.52109 + 1.66996I 6.36037 + 2.48874I
u = 0.452635 + 1.145970I
a = 1.69479 + 0.14216I
b = 0.297614 1.338770I
5.87133 7.92548I 0
u = 0.452635 1.145970I
a = 1.69479 0.14216I
b = 0.297614 + 1.338770I
5.87133 + 7.92548I 0
u = 0.201492 + 1.219100I
a = 0.686845 + 0.005818I
b = 1.382930 + 0.232456I
6.90028 + 0.03721I 0
u = 0.201492 1.219100I
a = 0.686845 0.005818I
b = 1.382930 0.232456I
6.90028 0.03721I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.197290 + 0.312647I
a = 0.707406 + 0.535648I
b = 0.398045 + 1.299040I
5.08314 + 11.58170I 0
u = 1.197290 0.312647I
a = 0.707406 0.535648I
b = 0.398045 1.299040I
5.08314 11.58170I 0
u = 0.232794 + 1.231510I
a = 0.633433 + 0.339154I
b = 0.612602 + 0.471856I
2.52109 1.66996I 0
u = 0.232794 1.231510I
a = 0.633433 0.339154I
b = 0.612602 0.471856I
2.52109 + 1.66996I 0
u = 0.339847 + 1.221780I
a = 0.956485 0.589998I
b = 0.120701 0.199374I
6.38478 + 6.22988I 0
u = 0.339847 1.221780I
a = 0.956485 + 0.589998I
b = 0.120701 + 0.199374I
6.38478 6.22988I 0
u = 0.276431 + 1.243720I
a = 0.639083 0.172102I
b = 0.230618 + 0.105542I
2.72784 2.52152I 0
u = 0.276431 1.243720I
a = 0.639083 + 0.172102I
b = 0.230618 0.105542I
2.72784 + 2.52152I 0
u = 0.397836 + 1.218830I
a = 0.644295 0.250433I
b = 1.211970 + 0.440132I
1.24375 5.55297I 0
u = 0.397836 1.218830I
a = 0.644295 + 0.250433I
b = 1.211970 0.440132I
1.24375 + 5.55297I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.211970 + 0.440132I
a = 0.590869 + 0.351158I
b = 0.397836 + 1.218830I
1.24375 5.55297I 0
u = 1.211970 0.440132I
a = 0.590869 0.351158I
b = 0.397836 1.218830I
1.24375 + 5.55297I 0
u = 0.685111 + 0.128372I
a = 1.26615 1.28343I
b = 0.294249 1.039510I
1.25382 + 4.32436I 10.17044 8.05596I
u = 0.685111 0.128372I
a = 1.26615 + 1.28343I
b = 0.294249 + 1.039510I
1.25382 4.32436I 10.17044 + 8.05596I
u = 0.151131 + 1.300520I
a = 0.803730 + 0.343215I
b = 0.920222 + 0.395412I
3.42651 + 2.86570I 0
u = 0.151131 1.300520I
a = 0.803730 0.343215I
b = 0.920222 0.395412I
3.42651 2.86570I 0
u = 0.090336 + 1.330560I
a = 0.986962 + 0.344993I
b = 0.62803 1.48659I
11.25570 7.19139I 0
u = 0.090336 1.330560I
a = 0.986962 0.344993I
b = 0.62803 + 1.48659I
11.25570 + 7.19139I 0
u = 0.398045 + 1.299040I
a = 0.753479 0.292200I
b = 1.197290 + 0.312647I
5.08314 + 11.58170I 0
u = 0.398045 1.299040I
a = 0.753479 + 0.292200I
b = 1.197290 0.312647I
5.08314 11.58170I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.297614 + 1.338770I
a = 1.48376 + 0.36485I
b = 0.452635 1.145970I
5.87133 + 7.92548I 0
u = 0.297614 1.338770I
a = 1.48376 0.36485I
b = 0.452635 + 1.145970I
5.87133 7.92548I 0
u = 1.382930 + 0.232456I
a = 0.191453 + 0.574145I
b = 0.201492 + 1.219100I
6.90028 + 0.03721I 0
u = 1.382930 0.232456I
a = 0.191453 0.574145I
b = 0.201492 1.219100I
6.90028 0.03721I 0
u = 0.336277 + 1.364760I
a = 1.38413 + 0.51193I
b = 0.271195 1.153980I
4.73825 4.95632I 0
u = 0.336277 1.364760I
a = 1.38413 0.51193I
b = 0.271195 + 1.153980I
4.73825 + 4.95632I 0
u = 0.39852 + 1.36564I
a = 0.121970 0.518027I
b = 0.214549 + 0.185839I
5.08106 2.21530I 0
u = 0.39852 1.36564I
a = 0.121970 + 0.518027I
b = 0.214549 0.185839I
5.08106 + 2.21530I 0
u = 0.269264 + 0.401570I
a = 1.63873 + 1.71309I
b = 0.463669 + 0.019406I
1.16995 + 1.22634I 14.0955 5.1640I
u = 0.269264 0.401570I
a = 1.63873 1.71309I
b = 0.463669 0.019406I
1.16995 1.22634I 14.0955 + 5.1640I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.463669 + 0.019406I
a = 2.41332 + 0.52542I
b = 0.269264 + 0.401570I
1.16995 + 1.22634I 14.0955 5.1640I
u = 0.463669 0.019406I
a = 2.41332 0.52542I
b = 0.269264 0.401570I
1.16995 1.22634I 14.0955 + 5.1640I
u = 0.62803 + 1.48659I
a = 0.863992 + 0.003752I
b = 0.090336 1.330560I
11.25570 + 7.19139I 0
u = 0.62803 1.48659I
a = 0.863992 0.003752I
b = 0.090336 + 1.330560I
11.25570 7.19139I 0
u = 0.214549 + 0.185839I
a = 0.89406 2.51300I
b = 0.39852 + 1.36564I
5.08106 2.21530I 7.36537 + 6.15916I
u = 0.214549 0.185839I
a = 0.89406 + 2.51300I
b = 0.39852 1.36564I
5.08106 + 2.21530I 7.36537 6.15916I
u = 0.42436 + 1.68610I
a = 0.591850 + 0.424891I
b = 0.053296 1.199700I
5.82389 3.48280I 0
u = 0.42436 1.68610I
a = 0.591850 0.424891I
b = 0.053296 + 1.199700I
5.82389 + 3.48280I 0
u = 0.230618 + 0.105542I
a = 1.51626 + 2.95895I
b = 0.276431 + 1.243720I
2.72784 2.52152I 6.98017 + 1.90432I
u = 0.230618 0.105542I
a = 1.51626 2.95895I
b = 0.276431 1.243720I
2.72784 + 2.52152I 6.98017 1.90432I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.120701 + 0.199374I
a = 4.14581 4.49501I
b = 0.339847 1.221780I
6.38478 6.22988I 5.40289 + 5.47727I
u = 0.120701 0.199374I
a = 4.14581 + 4.49501I
b = 0.339847 + 1.221780I
6.38478 + 6.22988I 5.40289 5.47727I
u = 1.04393 + 1.82190I
a = 0.279733 + 0.006501I
b = 0.087790 1.202470I
8.11459 3.37630I 0
u = 1.04393 1.82190I
a = 0.279733 0.006501I
b = 0.087790 + 1.202470I
8.11459 + 3.37630I 0
17
III. I
u
3
= hb + u, u
2
+ a + u, u
3
+ u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
11
=
u
2
u
u
a
9
=
u
2
2u
u
2
+ u 1
a
1
=
u
2
u
a
2
=
u
2
+ u 1
u
2
+ u 1
a
3
=
u
u
2
a
7
=
u
1
a
6
=
u
2
u + 1
u
2
a
10
=
u
0
a
10
=
u
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
2
9u 9
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
u
3
+ u + 1
c
2
, c
4
, c
11
u
3
+ u 1
c
5
, c
9
u
3
3u
2
+ 4u 1
c
8
u
3
u
2
+ 4u 3
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
10
, c
11
y
3
+ 2y
2
+ y 1
c
5
, c
9
y
3
y
2
+ 10y 1
c
8
y
3
+ 7y
2
+ 10y 9
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.341164 + 1.161540I
a = 1.57395 0.36899I
b = 0.341164 1.161540I
7.76697 + 7.91583I 2.23117 8.07622I
u = 0.341164 1.161540I
a = 1.57395 + 0.36899I
b = 0.341164 + 1.161540I
7.76697 7.91583I 2.23117 + 8.07622I
u = 0.682328
a = 1.14790
b = 0.682328
2.37447 16.5380
21
IV. I
u
4
= hb + u, 2u
7
+ u
6
7u
5
+ u
4
10u
3
+ a 7u, u
8
u
7
+ 4u
6
2u
5
+ 6u
4
2u
3
+ 5u
2
u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
11
=
2u
7
u
6
+ 7u
5
u
4
+ 10u
3
+ 7u
u
a
9
=
4u
7
2u
6
+ 12u
5
u
4
+ 16u
3
+ 10u + 1
u
6
2u
4
u
3
3u
2
1
a
1
=
2u
7
u
6
+ 7u
5
u
4
+ 10u
3
+ 8u
u
a
2
=
u
6
u
5
3u
4
2u
3
5u
2
2u 3
u
7
2u
5
u
4
2u
3
u
2
u
a
3
=
u
7
u
6
+ 3u
5
2u
4
+ 4u
3
2u
2
+ 2u 1
u
2
a
7
=
u
u
3
+ u
a
6
=
u
7
2u
6
+ 5u
5
5u
4
+ 7u
3
6u
2
+ 6u 3
u
2
a
10
=
3u
7
2u
6
+ 10u
5
2u
4
+ 13u
3
u
2
+ 9u
0
a
10
=
3u
7
2u
6
+ 10u
5
2u
4
+ 13u
3
u
2
+ 9u
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
6
+ u
5
2u
4
+ 3u
3
+ 2u
2
+ 7u + 1
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
8
+ 2u
7
+ 2u
6
+ 3u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ u + 1
c
2
u
8
+ 3u
7
+ 6u
6
+ 8u
5
+ 8u
4
+ 7u
3
+ 5u
2
+ 2u + 1
c
3
, c
7
u
8
+ u
7
+ 4u
6
+ 2u
5
+ 6u
4
+ 2u
3
+ 5u
2
+ u + 1
c
4
, c
11
u
8
u
7
+ 4u
6
2u
5
+ 6u
4
2u
3
+ 5u
2
u + 1
c
5
, c
9
u
8
+ 3u
7
+ 4u
6
+ 5u
5
+ 5u
4
+ 4u
3
+ 4u
2
+ 2u + 1
c
6
u
8
3u
7
+ 6u
6
8u
5
+ 8u
4
7u
3
+ 5u
2
2u + 1
c
8
u
8
6u
7
+ 19u
6
35u
5
+ 38u
4
25u
3
+ 10u
2
2u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
8
2y
6
3y
5
+ y
4
+ 7y
3
+ 9y
2
+ 5y + 1
c
2
, c
6
y
8
+ 3y
7
+ 4y
6
+ 2y
4
+ 11y
3
+ 13y
2
+ 6y + 1
c
3
, c
4
, c
7
c
11
y
8
+ 7y
7
+ 24y
6
+ 50y
5
+ 68y
4
+ 60y
3
+ 33y
2
+ 9y + 1
c
5
, c
9
y
8
y
7
4y
6
y
5
+ 7y
4
+ 12y
3
+ 10y
2
+ 4y + 1
c
8
y
8
+ 2y
7
+ 17y
6
61y
5
+ 52y
4
+ 33y
3
+ 76y
2
+ 16y + 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.506251 + 0.960489I
a = 0.249506 0.196383I
b = 0.506251 0.960489I
5.85877 1.31073I 1.64360 + 0.98117I
u = 0.506251 0.960489I
a = 0.249506 + 0.196383I
b = 0.506251 + 0.960489I
5.85877 + 1.31073I 1.64360 0.98117I
u = 0.302896 + 1.275450I
a = 1.64863 + 0.55513I
b = 0.302896 1.275450I
5.44517 5.83722I 3.39356 + 6.57107I
u = 0.302896 1.275450I
a = 1.64863 0.55513I
b = 0.302896 + 1.275450I
5.44517 + 5.83722I 3.39356 6.57107I
u = 0.584835 + 1.175860I
a = 0.684107 + 0.080025I
b = 0.584835 1.175860I
2.64533 4.83456I 3.93301 + 10.95748I
u = 0.584835 1.175860I
a = 0.684107 0.080025I
b = 0.584835 + 1.175860I
2.64533 + 4.83456I 3.93301 10.95748I
u = 0.118520 + 0.521695I
a = 0.08323 + 2.62717I
b = 0.118520 0.521695I
0.789792 + 1.148200I 0.97016 + 3.66325I
u = 0.118520 0.521695I
a = 0.08323 2.62717I
b = 0.118520 + 0.521695I
0.789792 1.148200I 0.97016 3.66325I
25
V. I
u
5
= hu
6
u
5
+ 3u
4
7u
3
+ 6u
2
+ 2b 10u + 5, 5u
7
22u
5
+ · · · +
6a + 11, u
8
+ 5u
6
3u
5
+ 10u
4
9u
3
+ 9u
2
7u + 3i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
11
=
5
6
u
7
+
11
3
u
5
+ ··· +
9
2
u
11
6
1
2
u
6
+
1
2
u
5
+ ··· + 5u
5
2
a
9
=
1
6
u
7
1
3
u
5
+ ··· +
3
2
u +
1
6
1
2
u
7
+ 2u
5
+ ··· +
5
2
u +
1
2
a
1
=
5
6
u
7
+
1
2
u
6
+ ···
1
2
u +
2
3
1
2
u
6
+
1
2
u
5
+ ··· + 5u
5
2
a
2
=
2
3
u
7
+ u
6
+ ··· 3u +
13
3
1
2
u
7
1
2
u
6
+ ··· +
5
2
u + 1
a
3
=
7
6
u
7
+ u
6
+ ···
13
2
u +
19
6
u
7
1
2
u
6
+ ··· + 4u +
1
2
a
7
=
u
u
3
+ u
a
6
=
1
6
u
7
+ 2u
6
+ ···
9
2
u +
5
6
u
7
u
6
+ 5u
5
6u
4
+ 13u
3
11u
2
+ 11u 5
a
10
=
5
6
u
7
+ u
6
+ ···
3
2
u +
7
6
1
2
u
6
+
1
2
u
5
+ ··· + 6u
5
2
a
10
=
5
6
u
7
+ u
6
+ ···
3
2
u +
7
6
1
2
u
6
+
1
2
u
5
+ ··· + 6u
5
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5
2
u
7
1
2
u
6
+
13
2
u
5
21
2
u
4
+ 5u
3
13u
2
1
2
u 9
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
8
5u
7
+ 9u
6
3u
5
8u
4
+ 7u
3
+ 3u
2
2u + 1
c
2
(u
4
u
3
+ 2u
2
+ 1)
2
c
3
, c
7
u
8
+ 5u
6
+ 3u
5
+ 10u
4
+ 9u
3
+ 9u
2
+ 7u + 3
c
4
, c
11
u
8
+ 5u
6
3u
5
+ 10u
4
9u
3
+ 9u
2
7u + 3
c
5
, c
9
u
8
+ 2u
6
+ 2u
5
+ 3u
4
+ 4u
3
+ 7u
2
+ 7u + 3
c
6
(u
4
+ u
3
+ 2u
2
+ 1)
2
c
8
(u
4
+ u + 1)
2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
8
7y
7
+ 35y
6
77y
5
+ 142y
4
91y
3
+ 21y
2
+ 2y + 1
c
2
, c
6
(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
2
c
3
, c
4
, c
7
c
11
y
8
+ 10y
7
+ 45y
6
+ 109y
5
+ 142y
4
+ 87y
3
+ 15y
2
+ 5y + 9
c
5
, c
9
y
8
+ 4y
7
+ 10y
6
+ 22y
5
+ 27y
4
+ 10y
3
+ 11y
2
7y + 9
c
8
(y
4
+ 2y
2
y + 1)
2
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.095575 + 1.200900I
a = 0.307939 0.630003I
b = 0.63156 + 1.63091I
7.71788 + 3.38562I 9.43066 4.92823I
u = 0.095575 1.200900I
a = 0.307939 + 0.630003I
b = 0.63156 1.63091I
7.71788 3.38562I 9.43066 + 4.92823I
u = 0.154365 + 1.248590I
a = 0.807775 + 0.482499I
b = 0.572771 + 0.314492I
2.15173 2.37936I 12.06934 + 4.77691I
u = 0.154365 1.248590I
a = 0.807775 0.482499I
b = 0.572771 0.314492I
2.15173 + 2.37936I 12.06934 4.77691I
u = 0.572771 + 0.314492I
a = 0.28741 + 1.78865I
b = 0.154365 + 1.248590I
2.15173 + 2.37936I 12.06934 4.77691I
u = 0.572771 0.314492I
a = 0.28741 1.78865I
b = 0.154365 1.248590I
2.15173 2.37936I 12.06934 + 4.77691I
u = 0.63156 + 1.63091I
a = 0.379420 0.298919I
b = 0.095575 + 1.200900I
7.71788 3.38562I 9.43066 + 4.92823I
u = 0.63156 1.63091I
a = 0.379420 + 0.298919I
b = 0.095575 1.200900I
7.71788 + 3.38562I 9.43066 4.92823I
29
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
3
+ u + 1)(u
8
5u
7
+ 9u
6
3u
5
8u
4
+ 7u
3
+ 3u
2
2u + 1)
· (u
8
+ 2u
7
+ 2u
6
+ 3u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ u + 1)
· (u
27
2u
26
+ ··· 10u + 3)(u
64
+ 2u
63
+ ··· 126u + 177)
c
2
(u
3
+ u 1)(u
4
u
3
+ 2u
2
+ 1)
2
· (u
8
+ 3u
7
+ 6u
6
+ 8u
5
+ 8u
4
+ 7u
3
+ 5u
2
+ 2u + 1)
· (u
27
+ 8u
26
+ ··· + 110u + 12)(u
32
3u
31
+ ··· 10u + 3)
2
c
3
, c
7
(u
3
+ u + 1)(u
8
+ 5u
6
+ 3u
5
+ 10u
4
+ 9u
3
+ 9u
2
+ 7u + 3)
· (u
8
+ u
7
+ ··· + u + 1)(u
27
u
26
+ ··· + 4u + 1)
· (u
64
5u
63
+ ··· 9u + 1)
c
4
, c
11
(u
3
+ u 1)(u
8
+ 5u
6
3u
5
+ 10u
4
9u
3
+ 9u
2
7u + 3)
· (u
8
u
7
+ ··· u + 1)(u
27
u
26
+ ··· + 4u + 1)
· (u
64
5u
63
+ ··· 9u + 1)
c
5
, c
9
(u
3
3u
2
+ 4u 1)(u
8
+ 2u
6
+ 2u
5
+ 3u
4
+ 4u
3
+ 7u
2
+ 7u + 3)
· (u
8
+ 3u
7
+ 4u
6
+ 5u
5
+ 5u
4
+ 4u
3
+ 4u
2
+ 2u + 1)
· (u
27
+ 12u
25
+ ··· + 15u
2
+ 1)(u
64
u
63
+ ··· 16935u + 15481)
c
6
(u
3
+ u + 1)(u
4
+ u
3
+ 2u
2
+ 1)
2
· (u
8
3u
7
+ 6u
6
8u
5
+ 8u
4
7u
3
+ 5u
2
2u + 1)
· (u
27
+ 8u
26
+ ··· + 110u + 12)(u
32
3u
31
+ ··· 10u + 3)
2
c
8
(u
3
u
2
+ 4u 3)(u
4
+ u + 1)
2
· (u
8
6u
7
+ 19u
6
35u
5
+ 38u
4
25u
3
+ 10u
2
2u + 1)
· (u
27
20u
26
+ ··· 1284u + 180)(u
32
+ 10u
31
+ ··· + 99u + 19)
2
30
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
3
+ 2y
2
+ y 1)(y
8
2y
6
3y
5
+ y
4
+ 7y
3
+ 9y
2
+ 5y + 1)
· (y
8
7y
7
+ 35y
6
77y
5
+ 142y
4
91y
3
+ 21y
2
+ 2y + 1)
· (y
27
+ 4y
26
+ ··· + 4y 9)(y
64
+ 4y
63
+ ··· + 305202y + 31329)
c
2
, c
6
(y
3
+ 2y
2
+ y 1)(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
2
· (y
8
+ 3y
7
+ 4y
6
+ 2y
4
+ 11y
3
+ 13y
2
+ 6y + 1)
· (y
27
+ 14y
26
+ ··· + 700y 144)(y
32
+ 21y
31
+ ··· + 74y + 9)
2
c
3
, c
4
, c
7
c
11
(y
3
+ 2y
2
+ y 1)
· (y
8
+ 7y
7
+ 24y
6
+ 50y
5
+ 68y
4
+ 60y
3
+ 33y
2
+ 9y + 1)
· (y
8
+ 10y
7
+ 45y
6
+ 109y
5
+ 142y
4
+ 87y
3
+ 15y
2
+ 5y + 9)
· (y
27
+ 27y
26
+ ··· 4y 1)(y
64
+ 49y
63
+ ··· 3y + 1)
c
5
, c
9
(y
3
y
2
+ 10y 1)(y
8
y
7
+ ··· + 4y + 1)
· (y
8
+ 4y
7
+ 10y
6
+ 22y
5
+ 27y
4
+ 10y
3
+ 11y
2
7y + 9)
· (y
27
+ 24y
26
+ ··· 30y 1)
· (y
64
+ 11y
63
+ ··· + 3729627377y + 239661361)
c
8
(y
3
+ 7y
2
+ 10y 9)(y
4
+ 2y
2
y + 1)
2
· (y
8
+ 2y
7
+ 17y
6
61y
5
+ 52y
4
+ 33y
3
+ 76y
2
+ 16y + 1)
· (y
27
2y
26
+ ··· + 561816y 32400)
· (y
32
+ 18y
31
+ ··· + 3461y + 361)
2
31