11a
331
(K11a
331
)
A knot diagram
1
Linearized knot diagam
10 6 1 9 8 2 11 5 3 7 4
Solving Sequence
4,9 1,5
3 10 8 6 2 11 7
c
4
c
3
c
9
c
8
c
5
c
2
c
11
c
7
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h8.54894 × 10
95
u
73
+ 1.55407 × 10
96
u
72
+ ··· + 2.00526 × 10
96
b 1.27828 × 10
97
,
2.74832 × 10
97
u
73
4.48394 × 10
97
u
72
+ ··· + 9.42470 × 10
97
a 1.70641 × 10
99
,
u
74
+ 3u
73
+ ··· + 209u + 47i
I
u
2
= hu
15
+ 3u
14
+ ··· + b + 2, u
15
2u
14
+ ··· + a + 1, u
17
+ 2u
16
+ ··· + 4u + 1i
* 2 irreducible components of dim
C
= 0, with total 91 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h8.55 × 10
95
u
73
+ 1.55 × 10
96
u
72
+ · · · + 2.01 × 10
96
b 1.28 ×
10
97
, 2.75 × 10
97
u
73
4.48 × 10
97
u
72
+ · · · + 9.42 × 10
97
a 1.71 ×
10
99
, u
74
+ 3u
73
+ · · · + 209u + 47i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
1
=
0.291608u
73
+ 0.475764u
72
+ ··· + 26.1433u + 18.1057
0.426327u
73
0.774999u
72
+ ··· + 28.8321u + 6.37465
a
5
=
1
u
2
a
3
=
0.571268u
73
+ 1.64222u
72
+ ··· + 103.904u + 29.6284
0.233836u
73
0.733389u
72
+ ··· 35.5006u 10.6620
a
10
=
0.160882u
73
+ 0.784015u
72
+ ··· + 215.233u + 63.4002
0.0885971u
73
1.07134u
72
+ ··· 178.043u 55.1254
a
8
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
2
=
0.756401u
73
+ 2.23671u
72
+ ··· + 147.047u + 42.9701
0.261940u
73
0.983478u
72
+ ··· 64.0355u 19.0821
a
11
=
0.134719u
73
0.299235u
72
+ ··· + 54.9754u + 24.4804
0.426327u
73
0.774999u
72
+ ··· + 28.8321u + 6.37465
a
7
=
0.303078u
73
+ 0.404458u
72
+ ··· 35.9491u 18.0658
0.240564u
73
0.355060u
72
+ ··· + 2.22918u 2.45974
a
7
=
0.303078u
73
+ 0.404458u
72
+ ··· 35.9491u 18.0658
0.240564u
73
0.355060u
72
+ ··· + 2.22918u 2.45974
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.681636u
73
3.18822u
72
+ ··· 172.342u 53.5504
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
74
+ 3u
73
+ ··· + 59049u + 17047
c
2
, c
6
u
74
+ 2u
73
+ ··· 349u 241
c
3
, c
11
u
74
4u
73
+ ··· + 578u 28
c
4
, c
5
, c
8
u
74
+ 3u
73
+ ··· + 209u + 47
c
7
, c
10
u
74
29u
72
+ ··· + 4312u 2881
c
9
u
74
u
73
+ ··· 2616u + 589
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
74
33y
73
+ ··· 6606862717y + 290600209
c
2
, c
6
y
74
+ 50y
73
+ ··· 32631y + 58081
c
3
, c
11
y
74
+ 46y
73
+ ··· 79788y + 784
c
4
, c
5
, c
8
y
74
+ 69y
73
+ ··· 23847y + 2209
c
7
, c
10
y
74
58y
73
+ ··· 75786956y + 8300161
c
9
y
74
9y
73
+ ··· 10759128y + 346921
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.729537 + 0.676863I
a = 0.868679 + 0.880701I
b = 0.163050 1.175520I
4.14808 0.48807I 0
u = 0.729537 0.676863I
a = 0.868679 0.880701I
b = 0.163050 + 1.175520I
4.14808 + 0.48807I 0
u = 0.977426 + 0.331531I
a = 0.19408 1.78945I
b = 0.495934 + 1.306620I
9.2153 11.1163I 0
u = 0.977426 0.331531I
a = 0.19408 + 1.78945I
b = 0.495934 1.306620I
9.2153 + 11.1163I 0
u = 0.943528 + 0.160031I
a = 0.306495 1.369660I
b = 0.498139 + 0.748835I
3.11842 + 2.09291I 0
u = 0.943528 0.160031I
a = 0.306495 + 1.369660I
b = 0.498139 0.748835I
3.11842 2.09291I 0
u = 0.906285 + 0.046309I
a = 0.37149 + 1.58844I
b = 0.058387 0.883000I
2.31155 + 0.31959I 6.67473 + 1.17791I
u = 0.906285 0.046309I
a = 0.37149 1.58844I
b = 0.058387 + 0.883000I
2.31155 0.31959I 6.67473 1.17791I
u = 0.795743 + 0.391782I
a = 0.33233 1.66140I
b = 0.446696 + 1.338070I
4.98505 + 5.49905I 7.28766 5.67795I
u = 0.795743 0.391782I
a = 0.33233 + 1.66140I
b = 0.446696 1.338070I
4.98505 5.49905I 7.28766 + 5.67795I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.040289 + 1.123610I
a = 1.53260 0.00979I
b = 0.755296 0.806599I
3.32334 + 3.24254I 0
u = 0.040289 1.123610I
a = 1.53260 + 0.00979I
b = 0.755296 + 0.806599I
3.32334 3.24254I 0
u = 0.639752 + 0.538004I
a = 0.48760 1.57150I
b = 0.366420 + 1.022380I
3.84856 1.30465I 7.86722 + 0.I
u = 0.639752 0.538004I
a = 0.48760 + 1.57150I
b = 0.366420 1.022380I
3.84856 + 1.30465I 7.86722 + 0.I
u = 0.000251 + 1.184520I
a = 1.98927 1.08115I
b = 0.096365 + 0.840334I
2.78997 3.49775I 0
u = 0.000251 1.184520I
a = 1.98927 + 1.08115I
b = 0.096365 0.840334I
2.78997 + 3.49775I 0
u = 0.159658 + 1.194760I
a = 0.089269 + 0.550066I
b = 0.29274 1.69325I
6.20327 3.01035I 0
u = 0.159658 1.194760I
a = 0.089269 0.550066I
b = 0.29274 + 1.69325I
6.20327 + 3.01035I 0
u = 0.546934 + 0.540048I
a = 0.27605 1.72599I
b = 0.276972 + 0.159839I
4.14609 + 2.20221I 4.65992 + 1.32874I
u = 0.546934 0.540048I
a = 0.27605 + 1.72599I
b = 0.276972 0.159839I
4.14609 2.20221I 4.65992 1.32874I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.107310 + 1.251050I
a = 0.06868 1.71275I
b = 0.03954 + 1.50942I
5.33288 + 0.16111I 0
u = 0.107310 1.251050I
a = 0.06868 + 1.71275I
b = 0.03954 1.50942I
5.33288 0.16111I 0
u = 0.643915 + 0.344718I
a = 0.68185 + 2.68762I
b = 0.339896 1.158020I
4.28355 + 5.31590I 8.32121 6.98455I
u = 0.643915 0.344718I
a = 0.68185 2.68762I
b = 0.339896 + 1.158020I
4.28355 5.31590I 8.32121 + 6.98455I
u = 0.672302 + 0.275487I
a = 0.463214 + 0.218192I
b = 0.994473 + 0.038479I
5.09446 5.88932I 7.14918 + 5.98042I
u = 0.672302 0.275487I
a = 0.463214 0.218192I
b = 0.994473 0.038479I
5.09446 + 5.88932I 7.14918 5.98042I
u = 0.534184 + 0.471782I
a = 0.203180 + 0.429819I
b = 0.568753 + 0.043415I
1.09531 + 1.83562I 2.55599 4.19616I
u = 0.534184 0.471782I
a = 0.203180 0.429819I
b = 0.568753 0.043415I
1.09531 1.83562I 2.55599 + 4.19616I
u = 0.781242 + 1.028170I
a = 0.589220 + 0.832021I
b = 0.342776 1.173760I
7.24129 + 5.12075I 0
u = 0.781242 1.028170I
a = 0.589220 0.832021I
b = 0.342776 + 1.173760I
7.24129 5.12075I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.162659 + 1.334780I
a = 0.513861 0.136702I
b = 1.40639 0.48404I
4.07205 + 2.16735I 0
u = 0.162659 1.334780I
a = 0.513861 + 0.136702I
b = 1.40639 + 0.48404I
4.07205 2.16735I 0
u = 0.077830 + 1.356390I
a = 0.719009 0.826751I
b = 0.343236 + 0.909674I
2.84114 + 0.89469I 0
u = 0.077830 1.356390I
a = 0.719009 + 0.826751I
b = 0.343236 0.909674I
2.84114 0.89469I 0
u = 0.173008 + 1.356910I
a = 1.01178 + 1.02451I
b = 0.593612 1.233660I
3.89386 4.74590I 0
u = 0.173008 1.356910I
a = 1.01178 1.02451I
b = 0.593612 + 1.233660I
3.89386 + 4.74590I 0
u = 0.605325 + 0.154014I
a = 0.73564 1.74796I
b = 0.50294 + 1.38892I
9.24632 + 0.28330I 12.69819 + 0.63805I
u = 0.605325 0.154014I
a = 0.73564 + 1.74796I
b = 0.50294 1.38892I
9.24632 0.28330I 12.69819 0.63805I
u = 0.243787 + 1.360410I
a = 1.128220 0.271966I
b = 0.755260 + 1.157050I
4.42124 2.83103I 0
u = 0.243787 1.360410I
a = 1.128220 + 0.271966I
b = 0.755260 1.157050I
4.42124 + 2.83103I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.327994 + 1.351610I
a = 0.439710 1.149670I
b = 0.290077 + 1.121430I
2.02174 + 4.04028I 0
u = 0.327994 1.351610I
a = 0.439710 + 1.149670I
b = 0.290077 1.121430I
2.02174 4.04028I 0
u = 0.195271 + 1.386520I
a = 1.62301 0.11159I
b = 0.143149 1.028900I
3.52909 4.64112I 0
u = 0.195271 1.386520I
a = 1.62301 + 0.11159I
b = 0.143149 + 1.028900I
3.52909 + 4.64112I 0
u = 0.47948 + 1.33348I
a = 0.76428 + 1.24106I
b = 0.600996 0.993957I
0.64736 7.35044I 0
u = 0.47948 1.33348I
a = 0.76428 1.24106I
b = 0.600996 + 0.993957I
0.64736 + 7.35044I 0
u = 0.00514 + 1.42211I
a = 0.340891 + 0.208274I
b = 0.964892 + 0.318084I
6.82153 + 0.92955I 0
u = 0.00514 1.42211I
a = 0.340891 0.208274I
b = 0.964892 0.318084I
6.82153 0.92955I 0
u = 0.30682 + 1.39309I
a = 0.0331436 0.1004190I
b = 0.778543 + 0.548393I
1.97320 2.18673I 0
u = 0.30682 1.39309I
a = 0.0331436 + 0.1004190I
b = 0.778543 0.548393I
1.97320 + 2.18673I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.26985 + 1.40575I
a = 0.280548 0.298110I
b = 1.265840 0.184891I
0.26002 9.34220I 0
u = 0.26985 1.40575I
a = 0.280548 + 0.298110I
b = 1.265840 + 0.184891I
0.26002 + 9.34220I 0
u = 0.25598 + 1.42903I
a = 1.10171 + 1.29179I
b = 0.429957 1.299690I
1.37538 + 8.63536I 0
u = 0.25598 1.42903I
a = 1.10171 1.29179I
b = 0.429957 + 1.299690I
1.37538 8.63536I 0
u = 0.09320 + 1.45012I
a = 0.367361 0.401509I
b = 0.570488 + 0.736664I
3.23957 + 0.97155I 0
u = 0.09320 1.45012I
a = 0.367361 + 0.401509I
b = 0.570488 0.736664I
3.23957 0.97155I 0
u = 0.33909 + 1.42618I
a = 0.897474 + 0.790587I
b = 0.412854 0.931526I
2.65219 + 4.84548I 0
u = 0.33909 1.42618I
a = 0.897474 0.790587I
b = 0.412854 + 0.931526I
2.65219 4.84548I 0
u = 0.14497 + 1.48045I
a = 0.308110 + 0.341335I
b = 0.732906 + 0.027438I
5.30403 + 4.22277I 0
u = 0.14497 1.48045I
a = 0.308110 0.341335I
b = 0.732906 0.027438I
5.30403 4.22277I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.480633 + 0.177328I
a = 2.91872 + 1.85536I
b = 0.012937 1.270620I
8.59018 2.10885I 14.2741 + 3.7354I
u = 0.480633 0.177328I
a = 2.91872 1.85536I
b = 0.012937 + 1.270620I
8.59018 + 2.10885I 14.2741 3.7354I
u = 0.31043 + 1.46205I
a = 0.917093 0.764806I
b = 0.70775 + 1.34146I
0.93880 + 9.51927I 0
u = 0.31043 1.46205I
a = 0.917093 + 0.764806I
b = 0.70775 1.34146I
0.93880 9.51927I 0
u = 0.38759 + 1.47330I
a = 0.98510 1.03601I
b = 0.64917 + 1.35397I
3.4628 16.0068I 0
u = 0.38759 1.47330I
a = 0.98510 + 1.03601I
b = 0.64917 1.35397I
3.4628 + 16.0068I 0
u = 0.463049 + 0.111626I
a = 0.09477 + 2.83159I
b = 0.354673 1.019580I
0.80708 2.42495I 0.09499 + 4.46298I
u = 0.463049 0.111626I
a = 0.09477 2.83159I
b = 0.354673 + 1.019580I
0.80708 + 2.42495I 0.09499 4.46298I
u = 0.437958
a = 0.177670
b = 1.22248
0.260961 17.7580
u = 0.024389 + 0.433644I
a = 0.483657 + 0.315936I
b = 0.542238 + 0.411060I
0.93889 + 1.06996I 3.82834 4.75783I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.024389 0.433644I
a = 0.483657 0.315936I
b = 0.542238 0.411060I
0.93889 1.06996I 3.82834 + 4.75783I
u = 0.413553
a = 1.39372
b = 0.0976025
1.01618 11.7030
u = 0.13112 + 1.67227I
a = 0.249215 + 0.136146I
b = 0.047190 0.821814I
4.10246 + 2.99543I 0
u = 0.13112 1.67227I
a = 0.249215 0.136146I
b = 0.047190 + 0.821814I
4.10246 2.99543I 0
12
II.
I
u
2
= hu
15
+3u
14
+· · ·+b+2, u
15
2u
14
+· · ·+a+1, u
17
+2u
16
+· · ·+4u+1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
1
=
u
15
+ 2u
14
+ ··· + 2u 1
u
15
3u
14
+ ··· 6u 2
a
5
=
1
u
2
a
3
=
2u
16
4u
15
+ ··· 12u
2
u
2u
15
+ 3u
14
+ ··· + 6u + 1
a
10
=
u
16
3u
15
+ ··· 7u
2
u
3u
15
+ 6u
14
+ ··· + 14u + 3
a
8
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
2
=
2u
16
3u
15
+ ··· 10u
2
+ 3u
u
15
+ u
14
+ ··· + 6u + 1
a
11
=
u
14
2u
13
+ ··· 4u 3
u
15
3u
14
+ ··· 6u 2
a
7
=
u
16
+ 3u
15
+ ··· + 8u + 4
u
16
+ u
15
+ ··· + 4u + 1
a
7
=
u
16
+ 3u
15
+ ··· + 8u + 4
u
16
+ u
15
+ ··· + 4u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
16
+ u
15
9u
14
+ 3u
13
38u
12
17u
11
90u
10
94u
9
121u
8
168u
7
101u
6
123u
5
74u
4
22u
3
43u
2
+ 4u
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
6u
16
+ ··· + 6u 1
c
2
u
17
+ u
16
+ ··· 5u
2
1
c
3
u
17
+ 3u
16
+ ··· + 3u + 1
c
4
, c
5
u
17
+ 2u
16
+ ··· + 4u + 1
c
6
u
17
u
16
+ ··· + 5u
2
+ 1
c
7
u
17
3u
16
+ ··· u + 1
c
8
u
17
2u
16
+ ··· + 4u 1
c
9
u
17
8u
14
+ ··· + 9u + 1
c
10
u
17
+ 3u
16
+ ··· u 1
c
11
u
17
3u
16
+ ··· + 3u 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
4y
16
+ ··· + 12y 1
c
2
, c
6
y
17
+ 11y
16
+ ··· 10y 1
c
3
, c
11
y
17
+ 11y
16
+ ··· 11y 1
c
4
, c
5
, c
8
y
17
+ 18y
16
+ ··· + 6y 1
c
7
, c
10
y
17
17y
16
+ ··· + 15y 1
c
9
y
17
12y
14
+ ··· + 55y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.917169 + 0.197212I
a = 0.33537 1.51249I
b = 0.325330 + 0.891594I
1.91049 + 1.40877I 1.99755 3.08552I
u = 0.917169 0.197212I
a = 0.33537 + 1.51249I
b = 0.325330 0.891594I
1.91049 1.40877I 1.99755 + 3.08552I
u = 0.035271 + 1.235610I
a = 0.70102 1.33099I
b = 0.19425 + 1.50294I
5.20161 + 1.70001I 5.37273 2.73061I
u = 0.035271 1.235610I
a = 0.70102 + 1.33099I
b = 0.19425 1.50294I
5.20161 1.70001I 5.37273 + 2.73061I
u = 0.171164 + 1.296500I
a = 1.75533 0.00516I
b = 0.459524 0.755278I
2.00726 + 4.91579I 2.45525 6.27876I
u = 0.171164 1.296500I
a = 1.75533 + 0.00516I
b = 0.459524 + 0.755278I
2.00726 4.91579I 2.45525 + 6.27876I
u = 0.409969 + 0.519303I
a = 1.08154 2.81632I
b = 0.226258 + 0.744134I
4.98146 2.80089I 12.23664 + 2.91381I
u = 0.409969 0.519303I
a = 1.08154 + 2.81632I
b = 0.226258 0.744134I
4.98146 + 2.80089I 12.23664 2.91381I
u = 0.089248 + 0.610949I
a = 0.658805 0.382206I
b = 0.101471 1.352370I
7.59288 1.25507I 8.41084 + 0.24395I
u = 0.089248 0.610949I
a = 0.658805 + 0.382206I
b = 0.101471 + 1.352370I
7.59288 + 1.25507I 8.41084 0.24395I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.124683 + 1.379790I
a = 0.427475 0.148819I
b = 1.044610 + 0.361468I
4.85490 1.43958I 1.090547 0.048277I
u = 0.124683 1.379790I
a = 0.427475 + 0.148819I
b = 1.044610 0.361468I
4.85490 + 1.43958I 1.090547 + 0.048277I
u = 0.36245 + 1.38049I
a = 0.841748 + 1.085670I
b = 0.467784 1.122320I
2.18873 6.08260I 3.68269 + 6.06370I
u = 0.36245 1.38049I
a = 0.841748 1.085670I
b = 0.467784 + 1.122320I
2.18873 + 6.08260I 3.68269 6.06370I
u = 0.17262 + 1.59957I
a = 0.019317 0.357002I
b = 0.175891 + 0.545807I
4.71707 2.60778I 2.21051 0.39909I
u = 0.17262 1.59957I
a = 0.019317 + 0.357002I
b = 0.175891 0.545807I
4.71707 + 2.60778I 2.21051 + 0.39909I
u = 0.257452
a = 1.60294
b = 0.935779
0.126778 3.70930
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
6u
16
+ ··· + 6u 1)(u
74
+ 3u
73
+ ··· + 59049u + 17047)
c
2
(u
17
+ u
16
+ ··· 5u
2
1)(u
74
+ 2u
73
+ ··· 349u 241)
c
3
(u
17
+ 3u
16
+ ··· + 3u + 1)(u
74
4u
73
+ ··· + 578u 28)
c
4
, c
5
(u
17
+ 2u
16
+ ··· + 4u + 1)(u
74
+ 3u
73
+ ··· + 209u + 47)
c
6
(u
17
u
16
+ ··· + 5u
2
+ 1)(u
74
+ 2u
73
+ ··· 349u 241)
c
7
(u
17
3u
16
+ ··· u + 1)(u
74
29u
72
+ ··· + 4312u 2881)
c
8
(u
17
2u
16
+ ··· + 4u 1)(u
74
+ 3u
73
+ ··· + 209u + 47)
c
9
(u
17
8u
14
+ ··· + 9u + 1)(u
74
u
73
+ ··· 2616u + 589)
c
10
(u
17
+ 3u
16
+ ··· u 1)(u
74
29u
72
+ ··· + 4312u 2881)
c
11
(u
17
3u
16
+ ··· + 3u 1)(u
74
4u
73
+ ··· + 578u 28)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
4y
16
+ ··· + 12y 1)
· (y
74
33y
73
+ ··· 6606862717y + 290600209)
c
2
, c
6
(y
17
+ 11y
16
+ ··· 10y 1)(y
74
+ 50y
73
+ ··· 32631y + 58081)
c
3
, c
11
(y
17
+ 11y
16
+ ··· 11y 1)(y
74
+ 46y
73
+ ··· 79788y + 784)
c
4
, c
5
, c
8
(y
17
+ 18y
16
+ ··· + 6y 1)(y
74
+ 69y
73
+ ··· 23847y + 2209)
c
7
, c
10
(y
17
17y
16
+ ··· + 15y 1)
· (y
74
58y
73
+ ··· 75786956y + 8300161)
c
9
(y
17
12y
14
+ ··· + 55y 1)
· (y
74
9y
73
+ ··· 10759128y + 346921)
19