11a
332
(K11a
332
)
A knot diagram
1
Linearized knot diagam
5 8 1 10 3 9 2 11 4 7 6
Solving Sequence
3,5 6,8
2 1 7 11 9 10 4
c
5
c
2
c
1
c
7
c
11
c
8
c
10
c
4
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= h−11u
14
4u
13
+ ··· + 18b + 5, 10u
14
+ 9u
12
+ ··· + 18a 18,
u
15
+ 2u
13
+ 2u
12
+ 8u
11
+ 4u
10
+ 16u
9
+ 13u
8
+ 21u
7
+ 12u
6
+ 18u
5
+ 6u
4
+ 6u
3
1i
I
u
2
= h−1.37804 × 10
45
u
35
1.80053 × 10
44
u
34
+ ··· + 3.99041 × 10
45
b 1.10674 × 10
46
,
3.65397 × 10
45
u
35
4.93039 × 10
45
u
34
+ ··· + 3.99041 × 10
45
a + 1.27280 × 10
45
, u
36
u
35
+ ··· 2u + 1i
I
u
3
= h1.73314 × 10
71
u
35
1.61154 × 10
72
u
34
+ ··· + 1.23451 × 10
71
b + 2.96287 × 10
71
,
2.28749 × 10
71
u
35
+ 1.95052 × 10
72
u
34
+ ··· + 1.23451 × 10
71
a 2.50099 × 10
72
,
u
36
10u
35
+ ··· 6u 1i
I
u
4
= h−61u
9
+ 5u
8
23u
7
223u
6
204u
5
+ 3u
4
340u
3
294u
2
+ 53b + 46u 34,
24u
9
15u
8
+ 16u
7
+ 86u
6
+ 29u
5
9u
4
+ 172u
3
+ 34u
2
+ 53a 32u + 102,
u
10
+ 4u
7
+ 4u
6
u
5
+ 5u
4
+ 7u
3
u
2
u + 1i
I
u
5
= hu
5
u
3
+ u
2
+ b + u 1, u
5
+ u
4
+ u
3
2u
2
+ a + 2, u
6
u
5
+ 2u
3
u + 1i
I
u
6
= h−u
5
+ 2u
4
+ u
2
+ 2b 3u + 1, u
5
+ 3u
4
2u
3
+ 2u
2
+ 2a 8u + 7, u
6
2u
5
2u
3
+ 5u
2
2u 1i
I
u
7
= h−17597088363u
11
+ 49269694805u
10
+ ··· + 102937123333b 11160459778,
231997276705u
11
468551566961u
10
+ ··· + 102937123333a 3200274870268,
u
12
2u
11
22u
10
36u
9
6u
8
+ 58u
7
+ 35u
6
80u
5
142u
4
120u
3
58u
2
12u + 1i
I
u
8
= h−3839279u
11
+ 8525704u
10
+ ··· + 9619063b 14981729,
21714338u
11
64033521u
10
+ ··· + 28857189a + 1783311,
u
12
3u
11
4u
10
+ 8u
9
+ 10u
8
12u
7
33u
6
+ 50u
5
+ 2u
4
44u
3
+ 25u
2
3i
I
u
9
= hb 1, a, u + 1i
I
u
10
= hb 1, a + u 3, u
2
2u 1i
I
u
11
= hb, a 1, u 1i
I
u
12
= hb 1, a 1, u 1i
I
u
13
= hb + 1, a 1, u + 1i
I
v
1
= ha, b + 1, v 1i
* 14 irreducible components of dim
C
= 0, with total 140 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h−11u
14
4u
13
+ · · · + 18b + 5, 10u
14
+ 9u
12
+ · · · + 18a 18, u
15
+
2u
13
+ · · · + 6u
3
1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
8
=
5
9
u
14
1
2
u
12
+ ··· +
23
18
u + 1
11
18
u
14
+
2
9
u
13
+ ···
11
9
u
5
18
a
2
=
5
18
u
14
1
3
u
12
+ ···
7
9
u
2
3
5
18
u
14
+
1
3
u
12
+ ··· +
7
9
u
1
3
a
1
=
1
5
18
u
14
+
1
3
u
12
+ ··· +
7
9
u
1
3
a
7
=
0.222222u
14
0.277778u
13
+ ··· 0.722222u + 1.55556
5
18
u
14
1
9
u
13
+ ···
2
9
u
5
18
a
11
=
5
18
u
14
1
3
u
12
+ ···
7
9
u
2
3
1
2
u
14
1
3
u
13
+ ··· +
1
2
u
1
3
a
9
=
0.555556u
14
+ 0.222222u
13
+ ··· + 0.611111u + 0.722222
5
18
u
14
5
18
u
13
+ ···
14
9
u +
2
9
a
10
=
0.0555556u
14
0.222222u
13
+ ··· 0.0555556u 0.722222
11
18
u
13
+ u
11
+ ··· + u
5
9
a
4
=
u
2
9
u
13
+
1
3
u
12
+ ··· +
2
3
u +
5
18
a
4
=
u
2
9
u
13
+
1
3
u
12
+ ··· +
2
3
u +
5
18
(ii) Obstruction class = 1
(iii) Cusp Shapes =
55
9
u
14
8
9
u
13
+
29
3
u
12
+
89
9
u
11
+
385
9
u
10
+
116
9
u
9
+
223
3
u
8
+
484
9
u
7
+
748
9
u
6
+
241
9
u
5
+
511
9
u
4
+
25
9
u
3
+
112
9
u
2
47
9
u +
25
9
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
15
+ 9u
14
+ ··· 32u 16
c
2
, c
4
, c
7
c
9
u
15
4u
13
+ 9u
11
2u
10
8u
9
+ 7u
8
+ 2u
7
12u
6
+ 4u
5
+ 9u
4
2u 2
c
3
, c
5
, c
6
c
8
u
15
+ 2u
13
+ ··· + 6u
3
1
c
11
u
15
+ 13u
14
+ ··· 416u 64
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
15
5y
14
+ ··· + 384y 256
c
2
, c
4
, c
7
c
9
y
15
8y
14
+ ··· + 4y 4
c
3
, c
5
, c
6
c
8
y
15
+ 4y
14
+ ··· + 12y
2
1
c
11
y
15
7y
14
+ ··· + 11264y 4096
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.375965 + 0.932481I
a = 0.022789 1.214510I
b = 0.76086 + 2.35797I
5.04027 9.43708I 7.9635 + 11.7594I
u = 0.375965 0.932481I
a = 0.022789 + 1.214510I
b = 0.76086 2.35797I
5.04027 + 9.43708I 7.9635 11.7594I
u = 0.770687 + 0.717882I
a = 0.585197 + 0.439087I
b = 0.78233 1.39703I
0.48581 + 3.45966I 2.92722 6.50047I
u = 0.770687 0.717882I
a = 0.585197 0.439087I
b = 0.78233 + 1.39703I
0.48581 3.45966I 2.92722 + 6.50047I
u = 0.017197 + 0.777026I
a = 0.70943 + 1.35975I
b = 0.32717 1.53341I
4.09690 + 5.67488I 5.06867 6.10846I
u = 0.017197 0.777026I
a = 0.70943 1.35975I
b = 0.32717 + 1.53341I
4.09690 5.67488I 5.06867 + 6.10846I
u = 0.483358 + 1.164780I
a = 0.793953 0.756191I
b = 0.527888 + 1.092680I
5.64308 + 1.61043I 6.76634 + 1.00019I
u = 0.483358 1.164780I
a = 0.793953 + 0.756191I
b = 0.527888 1.092680I
5.64308 1.61043I 6.76634 1.00019I
u = 0.442558 + 0.472159I
a = 0.761967 0.578478I
b = 0.096613 0.396023I
0.61502 + 1.62852I 1.81112 4.54842I
u = 0.442558 0.472159I
a = 0.761967 + 0.578478I
b = 0.096613 + 0.396023I
0.61502 1.62852I 1.81112 + 4.54842I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.031270 + 0.943313I
a = 0.670358 + 0.362743I
b = 0.175859 0.100257I
3.28483 + 7.08124I 3.75198 5.71793I
u = 1.031270 0.943313I
a = 0.670358 0.362743I
b = 0.175859 + 0.100257I
3.28483 7.08124I 3.75198 + 5.71793I
u = 0.419879
a = 2.09302
b = 0.477344
1.70444 5.76330
u = 1.19245 + 1.13162I
a = 0.285046 + 0.850536I
b = 0.66810 2.22561I
2.5860 19.7120I 0.95572 + 10.39733I
u = 1.19245 1.13162I
a = 0.285046 0.850536I
b = 0.66810 + 2.22561I
2.5860 + 19.7120I 0.95572 10.39733I
7
II.
I
u
2
= h−1.38×10
45
u
35
1.80×10
44
u
34
+· · ·+3.99×10
45
b1.11×10
46
, 3.65×
10
45
u
35
4.93×10
45
u
34
+· · ·+3.99×10
45
a+1.27×10
45
, u
36
u
35
+· · ·2u+1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
8
=
0.915688u
35
+ 1.23556u
34
+ ··· 5.91984u 0.318965
0.345337u
35
+ 0.0451214u
34
+ ··· 6.72198u + 2.77349
a
2
=
3.55283u
35
+ 4.15978u
34
+ ··· 10.7211u 1.59357
0.343747u
35
0.453576u
34
+ ··· 3.02752u + 0.528741
a
1
=
3.20909u
35
+ 3.70621u
34
+ ··· 13.7486u 1.06483
0.343747u
35
0.453576u
34
+ ··· 3.02752u + 0.528741
a
7
=
0.262533u
35
+ 0.323253u
34
+ ··· 10.4090u + 6.48551
0.282683u
35
+ 0.688828u
34
+ ··· 7.63695u + 1.19971
a
11
=
3.09336u
35
+ 3.63567u
34
+ ··· 6.51773u 2.09069
0.468774u
35
0.540153u
34
+ ··· 3.05287u + 0.483555
a
9
=
0.373382u
35
+ 1.27775u
34
+ ··· 14.1973u + 2.77440
0.273958u
35
0.0694172u
34
+ ··· 5.30088u + 2.30472
a
10
=
2.31277u
35
+ 2.47738u
34
+ ··· 18.4300u 0.137385
0.0179996u
35
0.268681u
34
+ ··· + 5.18656u 1.68120
a
4
=
1.78549u
35
1.68467u
34
+ ··· 7.57950u + 4.97500
1.01596u
35
1.06117u
34
+ ··· + 5.42208u + 0.378941
a
4
=
1.78549u
35
1.68467u
34
+ ··· 7.57950u + 4.97500
1.01596u
35
1.06117u
34
+ ··· + 5.42208u + 0.378941
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5.15842u
35
+ 3.75096u
34
+ ··· + 33.9670u 14.9765
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
18
4u
17
+ ··· + 4u
2
+ 1)
2
c
2
, c
4
, c
7
c
9
u
36
+ 3u
35
+ ··· + 34u + 13
c
3
, c
5
, c
6
c
8
u
36
u
35
+ ··· 2u + 1
c
11
(u
18
5u
17
+ ··· 8u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
18
+ 10y
17
+ ··· + 8y + 1)
2
c
2
, c
4
, c
7
c
9
y
36
15y
35
+ ··· + 40y + 169
c
3
, c
5
, c
6
c
8
y
36
y
35
+ ··· + 28y + 1
c
11
(y
18
+ 3y
17
+ ··· 8y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.363120 + 1.008320I
a = 0.026422 + 1.101700I
b = 0.70580 1.91504I
2.57204 + 5.31192I 3.36040 8.00060I
u = 0.363120 1.008320I
a = 0.026422 1.101700I
b = 0.70580 + 1.91504I
2.57204 5.31192I 3.36040 + 8.00060I
u = 0.649836 + 0.632824I
a = 0.608719 + 0.180629I
b = 0.783167 + 0.542527I
2.57204 5.31192I 3.36040 + 8.00060I
u = 0.649836 0.632824I
a = 0.608719 0.180629I
b = 0.783167 0.542527I
2.57204 + 5.31192I 3.36040 8.00060I
u = 0.893795 + 0.123771I
a = 0.806277 0.142896I
b = 0.470358 1.315610I
3.30139 + 5.60580I 4.21097 5.33069I
u = 0.893795 0.123771I
a = 0.806277 + 0.142896I
b = 0.470358 + 1.315610I
3.30139 5.60580I 4.21097 + 5.33069I
u = 0.440875 + 1.024740I
a = 0.025375 + 1.272790I
b = 0.33726 1.60649I
3.30139 + 5.60580I 4.21097 5.33069I
u = 0.440875 1.024740I
a = 0.025375 1.272790I
b = 0.33726 + 1.60649I
3.30139 5.60580I 4.21097 + 5.33069I
u = 0.517386 + 0.999523I
a = 0.149927 1.060780I
b = 0.04630 + 2.23105I
5.05604 1.80030I 7.45000 + 3.46748I
u = 0.517386 0.999523I
a = 0.149927 + 1.060780I
b = 0.04630 2.23105I
5.05604 + 1.80030I 7.45000 3.46748I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.850004 + 0.786233I
a = 0.268215 0.726745I
b = 0.028148 + 0.754872I
2.75241 3.93541I 2.90741 + 5.36629I
u = 0.850004 0.786233I
a = 0.268215 + 0.726745I
b = 0.028148 0.754872I
2.75241 + 3.93541I 2.90741 5.36629I
u = 0.298814 + 0.783563I
a = 0.584126 + 0.283863I
b = 0.179299 0.216656I
1.88210 + 1.75570I 3.07518 1.06674I
u = 0.298814 0.783563I
a = 0.584126 0.283863I
b = 0.179299 + 0.216656I
1.88210 1.75570I 3.07518 + 1.06674I
u = 0.095278 + 0.825512I
a = 1.87436 + 0.04602I
b = 0.009002 0.144399I
1.19542 1.15621I 10.86918 2.44420I
u = 0.095278 0.825512I
a = 1.87436 0.04602I
b = 0.009002 + 0.144399I
1.19542 + 1.15621I 10.86918 + 2.44420I
u = 0.437518 + 1.136460I
a = 0.512918 1.258620I
b = 0.45023 + 1.44725I
7.02166 7.49599I 6.57969 + 7.14836I
u = 0.437518 1.136460I
a = 0.512918 + 1.258620I
b = 0.45023 1.44725I
7.02166 + 7.49599I 6.57969 7.14836I
u = 0.371712 + 1.181350I
a = 0.390182 + 0.870496I
b = 0.67521 1.35698I
2.75241 + 3.93541I 2.90741 5.36629I
u = 0.371712 1.181350I
a = 0.390182 0.870496I
b = 0.67521 + 1.35698I
2.75241 3.93541I 2.90741 + 5.36629I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.972609 + 0.975530I
a = 0.804652 0.466962I
b = 0.0875024 + 0.0540753I
0.55505 12.95420I 1.0000 + 8.63684I
u = 0.972609 0.975530I
a = 0.804652 + 0.466962I
b = 0.0875024 0.0540753I
0.55505 + 12.95420I 1.0000 8.63684I
u = 1.375460 + 0.143710I
a = 0.532601 + 0.386317I
b = 0.755723 0.967094I
2.74089 + 1.92073I 7.73857 5.49648I
u = 1.375460 0.143710I
a = 0.532601 0.386317I
b = 0.755723 + 0.967094I
2.74089 1.92073I 7.73857 + 5.49648I
u = 0.338423 + 0.447370I
a = 0.36194 1.95892I
b = 0.396182 + 1.120630I
1.88210 1.75570I 3.07518 + 1.06674I
u = 0.338423 0.447370I
a = 0.36194 + 1.95892I
b = 0.396182 1.120630I
1.88210 + 1.75570I 3.07518 1.06674I
u = 0.092953 + 0.387873I
a = 2.70253 0.69095I
b = 0.598829 0.213056I
2.74089 + 1.92073I 7.73857 5.49648I
u = 0.092953 0.387873I
a = 2.70253 + 0.69095I
b = 0.598829 + 0.213056I
2.74089 1.92073I 7.73857 + 5.49648I
u = 0.164240 + 0.304020I
a = 0.30937 + 3.57193I
b = 0.77904 1.26752I
5.05604 1.80030I 7.45000 + 3.46748I
u = 0.164240 0.304020I
a = 0.30937 3.57193I
b = 0.77904 + 1.26752I
5.05604 + 1.80030I 7.45000 3.46748I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.40474 + 0.96008I
a = 0.456383 + 0.579963I
b = 0.73214 2.09422I
7.02166 7.49599I 0
u = 1.40474 0.96008I
a = 0.456383 0.579963I
b = 0.73214 + 2.09422I
7.02166 + 7.49599I 0
u = 1.26242 + 1.17225I
a = 0.270237 0.743976I
b = 0.67214 + 2.21899I
0.55505 + 12.95420I 0
u = 1.26242 1.17225I
a = 0.270237 + 0.743976I
b = 0.67214 2.21899I
0.55505 12.95420I 0
u = 1.69707 + 0.32713I
a = 0.472709 0.238795I
b = 1.10737 + 1.60482I
1.19542 + 1.15621I 0
u = 1.69707 0.32713I
a = 0.472709 + 0.238795I
b = 1.10737 1.60482I
1.19542 1.15621I 0
14
III. I
u
3
= h1.73 × 10
71
u
35
1.61 × 10
72
u
34
+ · · · + 1.23 × 10
71
b + 2.96 ×
10
71
, 2.29 × 10
71
u
35
+ 1.95 × 10
72
u
34
+ · · · + 1.23 × 10
71
a 2.50 ×
10
72
, u
36
10u
35
+ · · · 6u 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
8
=
1.85295u
35
15.7999u
34
+ ··· + 13.9344u + 20.2589
1.40390u
35
+ 13.0541u
34
+ ··· 19.0944u 2.40003
a
2
=
1.02308u
35
+ 12.5666u
34
+ ··· 17.7060u + 40.2995
1.98793u
35
+ 18.5611u
34
+ ··· 21.0095u 2.60561
a
1
=
3.01101u
35
+ 31.1278u
34
+ ··· 38.7154u + 37.6939
1.98793u
35
+ 18.5611u
34
+ ··· 21.0095u 2.60561
a
7
=
12.7714u
35
126.136u
34
+ ··· + 173.374u 58.1830
0.117701u
35
1.17964u
34
+ ··· + 0.298887u 0.237165
a
11
=
1.01828u
35
+ 12.4254u
34
+ ··· 14.6110u + 41.3172
1.24273u
35
+ 11.5677u
34
+ ··· 11.6668u 1.38062
a
9
=
9.38240u
35
94.2192u
34
+ ··· + 135.032u 61.6432
0.456694u
35
4.47246u
34
+ ··· + 6.95760u + 0.699328
a
10
=
26.5737u
35
+ 270.228u
34
+ ··· 395.140u + 223.633
0.323427u
35
+ 3.24528u
34
+ ··· 7.68584u 0.142044
a
4
=
23.0908u
35
+ 234.477u
34
+ ··· 344.610u + 187.947
0.952036u
35
8.90987u
34
+ ··· + 13.6977u + 2.55897
a
4
=
23.0908u
35
+ 234.477u
34
+ ··· 344.610u + 187.947
0.952036u
35
8.90987u
34
+ ··· + 13.6977u + 2.55897
(ii) Obstruction class = 1
(iii) Cusp Shapes = 31.0394u
35
320.627u
34
+ ··· + 444.568u 347.305
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
18
u
17
+ ··· + 8u 1)
2
c
2
, c
4
, c
7
c
9
(u
18
8u
16
+ ··· + 2u 1)
2
c
3
, c
5
, c
6
c
8
u
36
10u
35
+ ··· 6u 1
c
11
(u
9
u
8
+ 3u
7
+ u
6
+ u
5
u
4
+ 2u
3
+ u + 1)
4
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
18
7y
17
+ ··· 32y + 1)
2
c
2
, c
4
, c
7
c
9
(y
18
16y
17
+ ··· 18y + 1)
2
c
3
, c
5
, c
6
c
8
y
36
42y
35
+ ··· 66y + 1
c
11
(y
9
+ 5y
8
+ 13y
7
+ 7y
6
+ 17y
5
+ 11y
4
+ 4y
3
+ 6y
2
+ y 1)
4
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.03358
a = 0.814532
b = 2.17328
0.410667 404.090
u = 0.974908 + 0.644375I
a = 0.649195 0.319150I
b = 0.464754 0.305283I
2.62213 + 1.09146I 0. 5.89503I
u = 0.974908 0.644375I
a = 0.649195 + 0.319150I
b = 0.464754 + 0.305283I
2.62213 1.09146I 0. + 5.89503I
u = 1.210830 + 0.190950I
a = 0.379075 + 0.256363I
b = 0.329763 0.186088I
2.62213 + 1.09146I 0. 5.89503I
u = 1.210830 0.190950I
a = 0.379075 0.256363I
b = 0.329763 + 0.186088I
2.62213 1.09146I 0. + 5.89503I
u = 0.972906 + 0.767071I
a = 0.541205 + 0.879014I
b = 0.93294 2.13800I
2.94139 10.34380I 0. + 12.71172I
u = 0.972906 0.767071I
a = 0.541205 0.879014I
b = 0.93294 + 2.13800I
2.94139 + 10.34380I 0. 12.71172I
u = 1.202800 + 0.351550I
a = 0.934184 + 0.310379I
b = 0.368803 0.573213I
1.62967 1.42694I 0
u = 1.202800 0.351550I
a = 0.934184 0.310379I
b = 0.368803 + 0.573213I
1.62967 + 1.42694I 0
u = 0.687915 + 0.243994I
a = 1.08739 + 1.22141I
b = 0.64121 1.29222I
0.92113 6.20293I 12.02897 + 1.29054I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.687915 0.243994I
a = 1.08739 1.22141I
b = 0.64121 + 1.29222I
0.92113 + 6.20293I 12.02897 1.29054I
u = 0.556413 + 0.468109I
a = 0.71488 2.04959I
b = 0.429966 + 0.930334I
2.94139 + 10.34380I 0.42699 12.71172I
u = 0.556413 0.468109I
a = 0.71488 + 2.04959I
b = 0.429966 0.930334I
2.94139 10.34380I 0.42699 + 12.71172I
u = 0.653523 + 0.259178I
a = 0.97344 1.45983I
b = 0.555400 + 0.282300I
1.62967 + 1.42694I 3.03389 + 0.96634I
u = 0.653523 0.259178I
a = 0.97344 + 1.45983I
b = 0.555400 0.282300I
1.62967 1.42694I 3.03389 0.96634I
u = 0.457113 + 0.422721I
a = 0.99106 1.58772I
b = 0.98611 + 1.70538I
1.62967 + 1.42694I 3.03389 + 0.96634I
u = 0.457113 0.422721I
a = 0.99106 + 1.58772I
b = 0.98611 1.70538I
1.62967 1.42694I 3.03389 0.96634I
u = 0.528987 + 0.241881I
a = 0.964352 0.009017I
b = 1.10558 + 1.36508I
2.62213 1.09146I 4.31933 + 5.89503I
u = 0.528987 0.241881I
a = 0.964352 + 0.009017I
b = 1.10558 1.36508I
2.62213 + 1.09146I 4.31933 5.89503I
u = 1.27165 + 0.63193I
a = 0.294180 0.085640I
b = 0.399780 + 0.320910I
0.92113 6.20293I 0
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.27165 0.63193I
a = 0.294180 + 0.085640I
b = 0.399780 0.320910I
0.92113 + 6.20293I 0
u = 0.553048 + 0.027251I
a = 0.83551 1.27783I
b = 0.541322 + 0.585100I
2.62213 1.09146I 4.31933 + 5.89503I
u = 0.553048 0.027251I
a = 0.83551 + 1.27783I
b = 0.541322 0.585100I
2.62213 + 1.09146I 4.31933 5.89503I
u = 0.96035 + 1.23478I
a = 0.120430 + 0.753486I
b = 0.84582 2.08861I
0.92113 + 6.20293I 0
u = 0.96035 1.23478I
a = 0.120430 0.753486I
b = 0.84582 + 2.08861I
0.92113 6.20293I 0
u = 0.020107 + 0.337379I
a = 0.302784 1.251190I
b = 0.97510 2.83519I
0.92113 + 6.20293I 12.02897 1.29054I
u = 0.020107 0.337379I
a = 0.302784 + 1.251190I
b = 0.97510 + 2.83519I
0.92113 6.20293I 12.02897 + 1.29054I
u = 1.24101 + 1.12995I
a = 0.274705 0.899412I
b = 0.45396 + 2.12603I
2.94139 10.34380I 0
u = 1.24101 1.12995I
a = 0.274705 + 0.899412I
b = 0.45396 2.12603I
2.94139 + 10.34380I 0
u = 0.70138 + 1.63277I
a = 0.091048 0.649406I
b = 0.21926 + 1.83471I
1.62967 1.42694I 0
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.70138 1.63277I
a = 0.091048 + 0.649406I
b = 0.21926 1.83471I
1.62967 + 1.42694I 0
u = 0.127258
a = 18.2781
b = 0.120902
0.410667 404.090
u = 1.41519 + 1.57427I
a = 0.533829 + 0.282886I
b = 1.01282 1.31300I
2.94139 + 10.34380I 0
u = 1.41519 1.57427I
a = 0.533829 0.282886I
b = 1.01282 + 1.31300I
2.94139 10.34380I 0
u = 2.25061
a = 1.03351
b = 0.263377
0.410667 0
u = 5.43001
a = 0.155043
b = 6.26696
0.410667 0
21
IV. I
u
4
= h−61u
9
+ 5u
8
+ · · · + 53b 34, 24u
9
15u
8
+ · · · + 53a +
102, u
10
+ 4u
7
+ 4u
6
u
5
+ 5u
4
+ 7u
3
u
2
u + 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
8
=
0.452830u
9
+ 0.283019u
8
+ ··· + 0.603774u 1.92453
1.15094u
9
0.0943396u
8
+ ··· 0.867925u + 0.641509
a
2
=
0.679245u
9
0.924528u
8
+ ··· 3.90566u + 0.886792
0.679245u
9
+ 0.924528u
8
+ ··· + 3.90566u 1.88679
a
1
=
1
0.679245u
9
+ 0.924528u
8
+ ··· + 3.90566u 1.88679
a
7
=
1.09434u
9
0.433962u
8
+ ··· 1.79245u 0.849057
0.679245u
9
+ 0.924528u
8
+ ··· + 3.90566u 0.886792
a
11
=
0.679245u
9
0.924528u
8
+ ··· 3.90566u + 0.886792
0.226415u
9
+ 0.641509u
8
+ ··· + 2.30189u 0.962264
a
9
=
u
9
+ 4u
6
+ 4u
5
u
4
+ 5u
3
+ 7u
2
u 1
0.433962u
9
0.396226u
8
+ ··· 0.245283u + 1.09434
a
10
=
0.698113u
9
0.188679u
8
+ ··· + 0.264151u + 1.28302
0.283019u
9
0.301887u
8
+ ··· 2.37736u + 0.452830
a
4
=
u
0.924528u
9
0.452830u
8
+ ··· 1.56604u + 0.679245
a
4
=
u
0.924528u
9
0.452830u
8
+ ··· 1.56604u + 0.679245
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
199
53
u
9
+
237
53
u
8
274
53
u
7
691
53
u
6
13
53
u
5
+
280
53
u
4
1859
53
u
3
+
14
53
u
2
+
548
53
u
647
53
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
10
+ 10u
9
+ ··· + 131u + 29
c
2
, c
4
, c
7
c
9
(u
5
2u
3
+ u + 1)
2
c
3
, c
5
, c
6
c
8
u
10
+ 4u
7
+ 4u
6
u
5
+ 5u
4
+ 7u
3
u
2
u + 1
c
11
(u
5
+ 5u
4
+ 13u
3
+ 18u
2
+ 16u + 8)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
10
4y
9
+ ··· + 877y + 841
c
2
, c
4
, c
7
c
9
(y
5
4y
4
+ 6y
3
4y
2
+ y 1)
2
c
3
, c
5
, c
6
c
8
y
10
+ 8y
8
6y
7
+ 22y
6
15y
5
+ 39y
4
53y
3
+ 25y
2
3y + 1
c
11
(y
5
+ y
4
+ 21y
3
+ 12y
2
32y 64)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.820200 + 0.152463I
a = 1.25990 0.71322I
b = 1.44173 + 0.78416I
1.73183 + 9.10410I 2.74192 10.20249I
u = 0.820200 0.152463I
a = 1.25990 + 0.71322I
b = 1.44173 0.78416I
1.73183 9.10410I 2.74192 + 10.20249I
u = 0.583652 + 1.118000I
a = 0.500000 + 0.957760I
b = 0.66223 1.77825I
9.67856 7.93446 + 0.I
u = 0.583652 1.118000I
a = 0.500000 0.957760I
b = 0.66223 + 1.77825I
9.67856 7.93446 + 0.I
u = 1.103430 + 0.668374I
a = 0.522065 0.172431I
b = 0.289027 0.328931I
2.45878 + 1.56515I 6.72531 0.79694I
u = 1.103430 0.668374I
a = 0.522065 + 0.172431I
b = 0.289027 + 0.328931I
2.45878 1.56515I 6.72531 + 0.79694I
u = 0.338542 + 0.315903I
a = 1.52207 0.17243I
b = 0.042586 + 1.317710I
2.45878 1.56515I 6.72531 + 0.79694I
u = 0.338542 0.315903I
a = 1.52207 + 0.17243I
b = 0.042586 1.317710I
2.45878 + 1.56515I 6.72531 0.79694I
u = 1.00143 + 1.23642I
a = 0.259902 0.713220I
b = 0.97405 + 2.22028I
1.73183 9.10410I 2.74192 + 10.20249I
u = 1.00143 1.23642I
a = 0.259902 + 0.713220I
b = 0.97405 2.22028I
1.73183 + 9.10410I 2.74192 10.20249I
25
V.
I
u
5
= hu
5
u
3
+u
2
+b+u1, u
5
+u
4
+u
3
2u
2
+a+2, u
6
u
5
+2u
3
u+1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
8
=
u
5
u
4
u
3
+ 2u
2
2
u
5
+ u
3
u
2
u + 1
a
2
=
u
4
+ u
2
u 2
u
4
u
2
+ u + 1
a
1
=
1
u
4
u
2
+ u + 1
a
7
=
u
5
u
3
+ 2u
2
+ 2u
u
5
+ u
3
u
2
2u
a
11
=
u
4
u 2
u
5
+ u
4
+ u
3
2u
2
+ 2
a
9
=
u
5
+ u
4
2u
2
+ 1
u
5
u
4
+ 2u
2
+ u 1
a
10
=
u
4
u
2
+ u + 1
u
4
u 1
a
4
=
u
u
5
u
3
+ u
2
+ 2u
a
4
=
u
u
5
u
3
+ u
2
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9u
5
+ 5u
4
+ 4u
3
14u
2
3u + 5
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
u
5
u
4
+ 5u
3
u
2
4u + 2
c
2
, c
4
, c
7
c
9
, c
11
u
6
2u
4
+ 2u
2
+ 1
c
3
, c
5
u
6
u
5
+ 2u
3
u + 1
c
6
, c
8
u
6
+ u
5
2u
3
+ u + 1
c
10
u
6
+ u
5
u
4
5u
3
u
2
+ 4u + 2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
6
3y
5
+ 9y
4
27y
3
+ 37y
2
20y + 4
c
2
, c
4
, c
7
c
9
, c
11
(y
3
2y
2
+ 2y + 1)
2
c
3
, c
5
, c
6
c
8
y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.915589 + 0.402116I
a = 0.238984 0.544148I
b = 0.437621 + 0.402116I
3.04743 7.74305 + 0.I
u = 0.915589 0.402116I
a = 0.238984 + 0.544148I
b = 0.437621 0.402116I
3.04743 7.74305 + 0.I
u = 0.510869 + 0.551075I
a = 1.57262 + 0.71181I
b = 0.334264 0.651746I
3.16865 + 8.83066I 2.37152 6.93552I
u = 0.510869 0.551075I
a = 1.57262 0.71181I
b = 0.334264 + 0.651746I
3.16865 8.83066I 2.37152 + 6.93552I
u = 0.904720 + 0.975923I
a = 0.333639 0.915863I
b = 0.72812 + 2.17874I
3.16865 8.83066I 2.37152 + 6.93552I
u = 0.904720 0.975923I
a = 0.333639 + 0.915863I
b = 0.72812 2.17874I
3.16865 + 8.83066I 2.37152 6.93552I
29
VI. I
u
6
= h−u
5
+ 2u
4
+ u
2
+ 2b 3u + 1, u
5
+ 3u
4
2u
3
+ 2u
2
+ 2a 8u +
7, u
6
2u
5
2u
3
+ 5u
2
2u 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
8
=
1
2
u
5
3
2
u
4
+ u
3
u
2
+ 4u
7
2
1
2
u
5
u
4
1
2
u
2
+
3
2
u
1
2
a
2
=
3
2
u
5
+ 3u
4
1
2
u
3
+
7
2
u
2
7u + 4
1
a
1
=
3
2
u
5
+ 3u
4
1
2
u
3
+
7
2
u
2
7u + 5
1
a
7
=
u
5
+ 2u
4
+ 2u
2
5u + 2
u
2
u
a
11
=
2u
5
+
7
2
u
4
+
11
2
u
2
17
2
u + 4
1
2
u
5
+ u
4
+
1
2
u
2
3
2
u +
1
2
a
9
=
u
5
+ 3u
4
2u
3
+ 2u
2
7u + 7
1
a
10
=
3u
5
+
11
2
u
4
+
15
2
u
2
27
2
u + 6
1
2
u
5
+ u
4
+
3
2
u
2
5
2
u +
1
2
a
4
=
2u
5
+
11
2
u
4
+ ··· 14u +
21
2
1
2
u
4
1
2
u
3
1
2
u
2
u +
3
2
a
4
=
2u
5
+
11
2
u
4
+ ··· 14u +
21
2
1
2
u
4
1
2
u
3
1
2
u
2
u +
3
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
5
+ 14u
4
+ 2u
3
+ 26u
2
36u + 8
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u 1)
6
c
2
, c
4
, c
7
c
9
(u
3
u 1)
2
c
3
, c
5
, c
6
c
8
u
6
2u
5
2u
3
+ 5u
2
2u 1
c
11
(u
3
2u
2
+ 3u 1)
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y 1)
6
c
2
, c
4
, c
7
c
9
(y
3
2y
2
+ y 1)
2
c
3
, c
5
, c
6
c
8
y
6
4y
5
+ 2y
4
14y
3
+ 17y
2
14y + 1
c
11
(y
3
+ 2y
2
+ 5y 1)
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.881088 + 0.396954I
a = 0.385910 + 0.812028I
b = 0.400014 0.259730I
1.71668 6.59895I 5.08799 + 11.97592I
u = 0.881088 0.396954I
a = 0.385910 0.812028I
b = 0.400014 + 0.259730I
1.71668 + 6.59895I 5.08799 11.97592I
u = 0.758527 + 1.141820I
a = 0.074292 + 0.629446I
b = 0.69250 2.31173I
1.71668 + 6.59895I 5.08799 11.97592I
u = 0.758527 1.141820I
a = 0.074292 0.629446I
b = 0.69250 + 2.31173I
1.71668 6.59895I 5.08799 + 11.97592I
u = 0.280032
a = 4.73059
b = 0.966268
1.78843 20.1760
u = 2.03491
a = 0.650996
b = 0.781230
1.78843 20.1760
33
VII. I
u
7
= h−1.76 × 10
10
u
11
+ 4.93 × 10
10
u
10
+ · · · + 1.03 × 10
11
b 1.12 ×
10
10
, 2.32 × 10
11
u
11
4.69 × 10
11
u
10
+ · · · + 1.03 × 10
11
a 3.20 ×
10
12
, u
12
2u
11
+ · · · 12u + 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
8
=
2.25378u
11
+ 4.55182u
10
+ ··· + 134.798u + 31.0896
0.170950u
11
0.478639u
10
+ ··· 1.76707u + 0.108420
a
2
=
5.33449u
11
10.6318u
10
+ ··· 331.906u 78.9325
0.355926u
11
+ 0.917638u
10
+ ··· + 7.76055u 0.482769
a
1
=
4.97856u
11
9.71419u
10
+ ··· 324.145u 79.4152
0.355926u
11
+ 0.917638u
10
+ ··· + 7.76055u 0.482769
a
7
=
10.4727u
11
20.4059u
10
+ ··· 687.945u 168.916
0.0727736u
11
+ 0.157615u
10
+ ··· + 1.99730u + 0.0813584
a
11
=
5.36750u
11
10.6628u
10
+ ··· 333.969u 79.1754
0.265808u
11
+ 0.694626u
10
+ ··· + 5.32292u 0.312044
a
9
=
10.7685u
11
21.3803u
10
+ ··· 679.589u 161.749
0.351838u
11
1.17629u
10
+ ··· 3.06138u + 0.472073
a
10
=
37.0246u
11
71.7730u
10
+ ··· 2435.33u 591.123
0.190524u
11
+ 0.480988u
10
+ ··· + 4.89160u + 0.498647
a
4
=
31.2970u
11
60.7573u
10
+ ··· 2064.36u 503.536
0.180314u
11
0.534039u
10
+ ··· 2.09965u + 0.898103
a
4
=
31.2970u
11
60.7573u
10
+ ··· 2064.36u 503.536
0.180314u
11
0.534039u
10
+ ··· 2.09965u + 0.898103
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
120214687040
9357920303
u
11
+
17317169680
9357920303
u
10
+ ··· +
622019165280
322686907
u +
5213231948632
9357920303
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
2u
5
3u
4
+ 2u
3
4u
2
10u 1)
2
c
2
, c
4
, c
7
c
9
u
12
9u
10
+ 21u
8
30u
6
+ 23u
4
8u
2
+ 1
c
3
, c
5
u
12
2u
11
+ ··· 12u + 1
c
6
, c
8
u
12
+ 2u
11
+ ··· + 12u + 1
c
10
(u
6
+ 2u
5
3u
4
2u
3
4u
2
+ 10u 1)
2
c
11
(u
6
+ 4u
4
+ 11u
2
3)
2
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
6
10y
5
+ 9y
4
22y
3
+ 62y
2
92y + 1)
2
c
2
, c
4
, c
7
c
9
(y
6
9y
5
+ 21y
4
30y
3
+ 23y
2
8y + 1)
2
c
3
, c
5
, c
6
c
8
y
12
48y
11
+ ··· 260y + 1
c
11
(y
3
+ 4y
2
+ 11y 3)
4
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.04156
a = 0.818175
b = 2.34015
0.403335 690.830
u = 0.185343 + 0.681445I
a = 0.199845 + 0.807519I
b = 1.00769 3.18429I
0.62080 + 6.33267I 10.5872 10.3937I
u = 0.185343 0.681445I
a = 0.199845 0.807519I
b = 1.00769 + 3.18429I
0.62080 6.33267I 10.5872 + 10.3937I
u = 0.610652 + 0.293339I
a = 0.93175 1.43916I
b = 0.762152 + 1.043440I
0.62080 + 6.33267I 10.5872 10.3937I
u = 0.610652 0.293339I
a = 0.93175 + 1.43916I
b = 0.762152 1.043440I
0.62080 6.33267I 10.5872 + 10.3937I
u = 1.235890 + 0.607704I
a = 0.378372 0.196961I
b = 0.052606 + 0.384202I
0.62080 6.33267I 10.5872 + 10.3937I
u = 1.235890 0.607704I
a = 0.378372 + 0.196961I
b = 0.052606 0.384202I
0.62080 + 6.33267I 10.5872 10.3937I
u = 0.90547 + 1.21802I
a = 0.069427 + 0.762114I
b = 0.82828 2.12111I
0.62080 + 6.33267I 10.5872 10.3937I
u = 0.90547 1.21802I
a = 0.069427 0.762114I
b = 0.82828 + 2.12111I
0.62080 6.33267I 10.5872 + 10.3937I
u = 0.0621100
a = 40.5810
b = 0.0168748
0.403335 690.830
37
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 2.43574
a = 1.03479
b = 0.238066
0.403335 690.830
u = 6.34634
a = 0.134279
b = 7.32440
0.403335 690.830
38
VIII.
I
u
8
= h−3.84 × 10
6
u
11
+ 8.53 × 10
6
u
10
+ · · · + 9.62 × 10
6
b 1.50 × 10
7
, 2.17 ×
10
7
u
11
6.40×10
7
u
10
+· · ·+2.89×10
7
a+1.78×10
6
, u
12
3u
11
+· · ·+25u
2
3i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
8
=
0.752476u
11
+ 2.21898u
10
+ ··· 14.0569u 0.0617978
0.399132u
11
0.886334u
10
+ ··· + 0.905814u + 1.55750
a
2
=
1.33055u
11
+ 3.75852u
10
+ ··· 21.8132u + 1.26455
0.474331u
11
1.10281u
10
+ ··· + 0.888146u + 1.98250
a
1
=
0.856218u
11
+ 2.65571u
10
+ ··· 20.9251u + 3.24705
0.474331u
11
1.10281u
10
+ ··· + 0.888146u + 1.98250
a
7
=
1.27266u
11
3.34318u
10
+ ··· + 20.0104u 5.67212
0.0952408u
11
+ 0.203920u
10
+ ··· + 1.86972u + 0.223893
a
11
=
1.26989u
11
+ 3.79571u
10
+ ··· 24.3819u + 1.52572
0.557626u
11
1.21768u
10
+ ··· 0.352878u + 1.67943
a
9
=
0.481396u
11
2.00064u
10
+ ··· + 29.4914u 5.06785
0.109216u
11
+ 0.560242u
10
+ ··· 1.69307u 1.38466
a
10
=
1.62779u
11
+ 6.07527u
10
+ ··· 76.9600u + 20.5954
0.0384477u
11
0.150506u
10
+ ··· + 0.0617978u + 1.25743
a
4
=
2.36787u
11
+ 7.01824u
10
+ ··· 62.3409u + 15.2970
0.156229u
11
0.349463u
10
+ ··· 1.38815u + 0.476791
a
4
=
2.36787u
11
+ 7.01824u
10
+ ··· 62.3409u + 15.2970
0.156229u
11
0.349463u
10
+ ··· 1.38815u + 0.476791
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3743040
9619063
u
11
21556320
9619063
u
10
+ ··· +
940282848
9619063
u
442031262
9619063
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
6
+ u
5
2u
4
+ 2u
3
2u
2
+ 4u 1)
2
c
2
, c
4
, c
7
c
9
(u
6
+ 3u
5
+ 2u
4
u
3
u
2
1)
2
c
3
, c
5
, c
6
c
8
u
12
3u
11
+ ··· + 25u
2
3
c
11
(u
3
+ u + 1)
4
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
6
5y
5
4y
4
6y
3
8y
2
12y + 1)
2
c
2
, c
4
, c
7
c
9
(y
6
5y
5
+ 8y
4
7y
3
3y
2
+ 2y + 1)
2
c
3
, c
5
, c
6
c
8
y
12
17y
11
+ ··· 150y + 9
c
11
(y
3
+ 2y
2
+ y 1)
4
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.993657
a = 0.814967
b = 1.77226
0.403335 75.8160
u = 0.749156 + 0.689827I
a = 0.512708 + 0.359105I
b = 0.13466 1.78906I
0.62080 + 6.33267I 5.09224 6.77700I
u = 0.749156 0.689827I
a = 0.512708 0.359105I
b = 0.13466 + 1.78906I
0.62080 6.33267I 5.09224 + 6.77700I
u = 1.063990 + 0.437974I
a = 0.096400 0.545572I
b = 0.371049 + 0.149196I
0.62080 6.33267I 5.09224 + 6.77700I
u = 1.063990 0.437974I
a = 0.096400 + 0.545572I
b = 0.371049 0.149196I
0.62080 + 6.33267I 5.09224 6.77700I
u = 0.592462 + 0.353499I
a = 0.95202 + 1.61908I
b = 0.126984 1.276200I
0.62080 6.33267I 5.09224 + 6.77700I
u = 0.592462 0.353499I
a = 0.95202 1.61908I
b = 0.126984 + 1.276200I
0.62080 + 6.33267I 5.09224 6.77700I
u = 1.06445 + 1.26319I
a = 0.155027 + 0.768975I
b = 0.63432 2.03002I
0.62080 + 6.33267I 5.09224 6.77700I
u = 1.06445 1.26319I
a = 0.155027 0.768975I
b = 0.63432 + 2.03002I
0.62080 6.33267I 5.09224 + 6.77700I
u = 0.287025
a = 6.30537
b = 0.313822
0.403335 75.8160
42
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.75765
a = 1.02967
b = 0.370859
0.403335 75.8160
u = 3.35600
a = 0.241298
b = 3.79733
0.403335 75.8160
43
IX. I
u
9
= hb 1, a, u + 1i
(i) Arc colorings
a
3
=
0
1
a
5
=
1
0
a
6
=
1
1
a
8
=
0
1
a
2
=
0
1
a
1
=
1
1
a
7
=
0
1
a
11
=
1
1
a
9
=
1
0
a
10
=
1
0
a
4
=
1
0
a
4
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
44
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u 1
c
2
, c
4
, c
7
c
9
, c
11
u
c
3
, c
5
, c
10
u + 1
45
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
8
, c
10
y 1
c
2
, c
4
, c
7
c
9
, c
11
y
46
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
47
X. I
u
10
= hb 1, a + u 3, u
2
2u 1i
(i) Arc colorings
a
3
=
0
u
a
5
=
1
0
a
6
=
1
2u + 1
a
8
=
u + 3
1
a
2
=
2u + 4
1
a
1
=
2u + 5
1
a
7
=
u 3
u
a
11
=
2u + 5
1
a
9
=
4u 9
u 1
a
10
=
3u + 8
u + 1
a
4
=
5u + 12
2
a
4
=
5u + 12
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 36
48
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u + 1)
2
c
2
, c
4
, c
7
c
9
u
2
2
c
3
, c
5
u
2
2u 1
c
6
, c
8
u
2
+ 2u 1
c
10
(u 1)
2
c
11
u
2
49
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y 1)
2
c
2
, c
4
, c
7
c
9
(y 2)
2
c
3
, c
5
, c
6
c
8
y
2
6y + 1
c
11
y
2
50
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.414214
a = 3.41421
b = 1.00000
1.64493 36.0000
u = 2.41421
a = 0.585786
b = 1.00000
1.64493 36.0000
51
XI. I
u
11
= hb, a 1, u 1i
(i) Arc colorings
a
3
=
0
1
a
5
=
1
0
a
6
=
1
1
a
8
=
1
0
a
2
=
1
1
a
1
=
0
1
a
7
=
0
1
a
11
=
1
0
a
9
=
1
0
a
10
=
1
1
a
4
=
0
1
a
4
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
52
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
u 1
c
3
, c
8
u
53
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y 1
c
3
, c
8
y
54
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
1.64493 6.00000
55
XII. I
u
12
= hb 1, a 1, u 1i
(i) Arc colorings
a
3
=
0
1
a
5
=
1
0
a
6
=
1
1
a
8
=
1
1
a
2
=
1
0
a
1
=
1
0
a
7
=
0
1
a
11
=
2
1
a
9
=
1
0
a
10
=
2
1
a
4
=
1
1
a
4
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
56
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
c
2
, c
9
, c
11
u + 1
c
3
, c
4
, c
5
c
6
, c
7
, c
8
u 1
c
10
u + 2
57
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
11
y 1
c
10
y 4
58
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
59
XIII. I
u
13
= hb + 1, a 1, u + 1i
(i) Arc colorings
a
3
=
0
1
a
5
=
1
0
a
6
=
1
1
a
8
=
1
1
a
2
=
1
2
a
1
=
1
2
a
7
=
0
1
a
11
=
0
1
a
9
=
1
0
a
10
=
0
1
a
4
=
1
1
a
4
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
60
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u 2
c
2
, c
9
, c
11
u 1
c
3
, c
4
, c
5
c
6
, c
7
, c
8
u + 1
c
10
u
61
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y 4
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
11
y 1
c
10
y
62
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
13
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
63
XIV. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
5
=
1
0
a
6
=
1
0
a
8
=
0
1
a
2
=
1
1
a
1
=
2
1
a
7
=
1
0
a
11
=
1
1
a
9
=
1
0
a
10
=
2
1
a
4
=
3
1
a
4
=
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
64
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
, c
8
c
9
, c
10
, c
11
u 1
c
5
, c
6
u
65
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
, c
8
c
9
, c
10
, c
11
y 1
c
5
, c
6
y
66
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
67
XV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u 2)(u 1)
9
(u + 1)
2
(u
6
2u
5
3u
4
+ 2u
3
4u
2
10u 1)
2
· (u
6
u
5
u
4
+ 5u
3
u
2
4u + 2)(u
6
+ u
5
2u
4
+ 2u
3
2u
2
+ 4u 1)
2
· (u
10
+ 10u
9
+ ··· + 131u + 29)(u
15
+ 9u
14
+ ··· 32u 16)
· ((u
18
4u
17
+ ··· + 4u
2
+ 1)
2
)(u
18
u
17
+ ··· + 8u 1)
2
c
2
, c
4
, c
7
c
9
u(u 1)
3
(u + 1)(u
2
2)(u
3
u 1)
2
(u
5
2u
3
+ u + 1)
2
· (u
6
2u
4
+ 2u
2
+ 1)(u
6
+ 3u
5
+ 2u
4
u
3
u
2
1)
2
· (u
12
9u
10
+ 21u
8
30u
6
+ 23u
4
8u
2
+ 1)
· (u
15
4u
13
+ 9u
11
2u
10
8u
9
+ 7u
8
+ 2u
7
12u
6
+ 4u
5
+ 9u
4
2u 2)
· ((u
18
8u
16
+ ··· + 2u 1)
2
)(u
36
+ 3u
35
+ ··· + 34u + 13)
c
3
, c
5
u(u 1)
2
(u + 1)
2
(u
2
2u 1)(u
6
2u
5
2u
3
+ 5u
2
2u 1)
· (u
6
u
5
+ 2u
3
u + 1)(u
10
+ 4u
7
+ ··· u + 1)
· (u
12
3u
11
+ ··· + 25u
2
3)(u
12
2u
11
+ ··· 12u + 1)
· (u
15
+ 2u
13
+ ··· + 6u
3
1)(u
36
10u
35
+ ··· 6u 1)
· (u
36
u
35
+ ··· 2u + 1)
c
6
, c
8
u(u 1)
3
(u + 1)(u
2
+ 2u 1)(u
6
2u
5
2u
3
+ 5u
2
2u 1)
· (u
6
+ u
5
2u
3
+ u + 1)(u
10
+ 4u
7
+ ··· u + 1)
· (u
12
3u
11
+ ··· + 25u
2
3)(u
12
+ 2u
11
+ ··· + 12u + 1)
· (u
15
+ 2u
13
+ ··· + 6u
3
1)(u
36
10u
35
+ ··· 6u 1)
· (u
36
u
35
+ ··· 2u + 1)
c
10
u(u 1)
10
(u + 1)(u + 2)(u
6
+ u
5
2u
4
+ 2u
3
2u
2
+ 4u 1)
2
· (u
6
+ u
5
u
4
5u
3
u
2
+ 4u + 2)
· (u
6
+ 2u
5
3u
4
2u
3
4u
2
+ 10u 1)
2
· (u
10
+ 10u
9
+ ··· + 131u + 29)(u
15
+ 9u
14
+ ··· 32u 16)
· ((u
18
4u
17
+ ··· + 4u
2
+ 1)
2
)(u
18
u
17
+ ··· + 8u 1)
2
c
11
u
3
(u 1)
3
(u + 1)(u
3
+ u + 1)
4
(u
3
2u
2
+ 3u 1)
2
· (u
5
+ 5u
4
+ 13u
3
+ 18u
2
+ 16u + 8)
2
(u
6
2u
4
+ 2u
2
+ 1)
· (u
6
+ 4u
4
+ 11u
2
3)
2
(u
9
u
8
+ 3u
7
+ u
6
+ u
5
u
4
+ 2u
3
+ u + 1)
4
· (u
15
+ 13u
14
+ ··· 416u 64)(u
18
5u
17
+ ··· 8u + 1)
2
68
XVI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
y(y 4)(y 1)
11
(y
6
10y
5
+ 9y
4
22y
3
+ 62y
2
92y + 1)
2
· (y
6
5y
5
4y
4
6y
3
8y
2
12y + 1)
2
· (y
6
3y
5
+ 9y
4
27y
3
+ 37y
2
20y + 4)
· (y
10
4y
9
+ ··· + 877y + 841)(y
15
5y
14
+ ··· + 384y 256)
· ((y
18
7y
17
+ ··· 32y + 1)
2
)(y
18
+ 10y
17
+ ··· + 8y + 1)
2
c
2
, c
4
, c
7
c
9
y(y 2)
2
(y 1)
4
(y
3
2y
2
+ y 1)
2
(y
3
2y
2
+ 2y + 1)
2
· (y
5
4y
4
+ 6y
3
4y
2
+ y 1)
2
· (y
6
9y
5
+ 21y
4
30y
3
+ 23y
2
8y + 1)
2
· ((y
6
5y
5
+ ··· + 2y + 1)
2
)(y
15
8y
14
+ ··· + 4y 4)
· ((y
18
16y
17
+ ··· 18y + 1)
2
)(y
36
15y
35
+ ··· + 40y + 169)
c
3
, c
5
, c
6
c
8
y(y 1)
4
(y
2
6y + 1)(y
6
4y
5
+ 2y
4
14y
3
+ 17y
2
14y + 1)
· (y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1)
· (y
10
+ 8y
8
6y
7
+ 22y
6
15y
5
+ 39y
4
53y
3
+ 25y
2
3y + 1)
· (y
12
48y
11
+ ··· 260y + 1)(y
12
17y
11
+ ··· 150y + 9)
· (y
15
+ 4y
14
+ ··· + 12y
2
1)(y
36
42y
35
+ ··· 66y + 1)
· (y
36
y
35
+ ··· + 28y + 1)
c
11
y
3
(y 1)
4
(y
3
2y
2
+ 2y + 1)
2
(y
3
+ 2y
2
+ y 1)
4
· (y
3
+ 2y
2
+ 5y 1)
2
(y
3
+ 4y
2
+ 11y 3)
4
· (y
5
+ y
4
+ 21y
3
+ 12y
2
32y 64)
2
· (y
9
+ 5y
8
+ 13y
7
+ 7y
6
+ 17y
5
+ 11y
4
+ 4y
3
+ 6y
2
+ y 1)
4
· (y
15
7y
14
+ ··· + 11264y 4096)(y
18
+ 3y
17
+ ··· 8y + 1)
2
69