11a
334
(K11a
334
)
A knot diagram
1
Linearized knot diagam
7 8 1 10 11 9 2 3 4 5 6
Solving Sequence
5,10
11 6 1 4 3 9 7 2 8
c
10
c
5
c
11
c
4
c
3
c
9
c
6
c
1
c
8
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
24
u
23
+ ··· + 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 24 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
24
u
23
+ · · · + 2u + 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
u
u
a
3
=
u
7
+ 4u
5
4u
3
+ 2u
u
9
+ 5u
7
7u
5
+ 2u
3
+ u
a
9
=
u
2
+ 1
u
2
a
7
=
u
7
4u
5
+ 4u
3
2u
u
7
3u
5
+ u
a
2
=
u
18
11u
16
+ 48u
14
107u
12
+ 133u
10
95u
8
+ 34u
6
2u
4
3u
2
+ 1
u
18
10u
16
+ 37u
14
60u
12
+ 35u
10
+ 8u
8
16u
6
+ 2u
4
+ 3u
2
a
8
=
u
18
11u
16
+ 48u
14
107u
12
+ 133u
10
95u
8
+ 34u
6
2u
4
3u
2
+ 1
u
20
12u
18
+ ··· 5u
4
2u
2
a
8
=
u
18
11u
16
+ 48u
14
107u
12
+ 133u
10
95u
8
+ 34u
6
2u
4
3u
2
+ 1
u
20
12u
18
+ ··· 5u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
20
+ 52u
18
276u
16
+ 4u
15
+ 768u
14
40u
13
1200u
12
+
152u
11
+ 1048u
10
272u
9
456u
8
+ 232u
7
+ 16u
6
84u
5
+ 64u
4
16u
2
+ 4u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u
24
+ u
23
+ ··· + 2u + 1
c
3
, c
6
u
24
5u
23
+ ··· + 8u + 1
c
4
, c
5
, c
9
c
10
, c
11
u
24
u
23
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
y
24
27y
23
+ ··· 12y + 1
c
3
, c
6
y
24
+ 9y
23
+ ··· 52y + 1
c
4
, c
5
, c
9
c
10
, c
11
y
24
31y
23
+ ··· 12y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.950752 + 0.350160I
8.25724 + 7.03301I 18.3094 5.9376I
u = 0.950752 0.350160I
8.25724 7.03301I 18.3094 + 5.9376I
u = 0.889313 + 0.320048I
1.05294 4.61822I 15.0731 + 7.6448I
u = 0.889313 0.320048I
1.05294 + 4.61822I 15.0731 7.6448I
u = 0.931166
4.16199 21.6480
u = 1.08787
11.9871 21.6380
u = 0.791765 + 0.276135I
0.346278 + 1.021000I 12.74843 0.89701I
u = 0.791765 0.276135I
0.346278 1.021000I 12.74843 + 0.89701I
u = 0.603718 + 0.367833I
6.35060 + 0.70363I 16.4740 + 1.9101I
u = 0.603718 0.367833I
6.35060 0.70363I 16.4740 1.9101I
u = 0.139902 + 0.569572I
4.91541 3.91207I 12.94617 + 4.09440I
u = 0.139902 0.569572I
4.91541 + 3.91207I 12.94617 4.09440I
u = 0.055351 + 0.524042I
1.82022 + 1.73926I 8.19189 4.76160I
u = 0.055351 0.524042I
1.82022 1.73926I 8.19189 + 4.76160I
u = 1.63181
13.8397 18.0490
u = 1.66882 + 0.06009I
9.03688 2.20767I 14.13375 0.08900I
u = 1.66882 0.06009I
9.03688 + 2.20767I 14.13375 + 0.08900I
u = 1.68602 + 0.08006I
10.10980 + 6.14857I 16.6878 5.7012I
u = 1.68602 0.08006I
10.10980 6.14857I 16.6878 + 5.7012I
u = 1.68905
13.4393 20.4550
u = 1.70217 + 0.09194I
17.5954 8.7809I 19.5765 + 4.4157I
u = 1.70217 0.09194I
17.5954 + 8.7809I 19.5765 4.4157I
u = 0.291508
0.498247 19.9340
u = 1.72899
17.4406 21.9940
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u
24
+ u
23
+ ··· + 2u + 1
c
3
, c
6
u
24
5u
23
+ ··· + 8u + 1
c
4
, c
5
, c
9
c
10
, c
11
u
24
u
23
+ ··· + 2u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
y
24
27y
23
+ ··· 12y + 1
c
3
, c
6
y
24
+ 9y
23
+ ··· 52y + 1
c
4
, c
5
, c
9
c
10
, c
11
y
24
31y
23
+ ··· 12y + 1
7