11a
336
(K11a
336
)
A knot diagram
1
Linearized knot diagam
8 7 1 10 11 9 2 3 4 5 6
Solving Sequence
3,7
2 8 9 1 4 10 6 11 5
c
2
c
7
c
8
c
1
c
3
c
9
c
6
c
11
c
5
c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
29
+ u
28
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 29 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
29
+ u
28
+ · · · u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
8
=
u
u
3
+ u
a
9
=
u
3
2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
4
=
u
6
3u
4
2u
2
+ 1
u
8
+ 4u
6
+ 4u
4
a
10
=
u
17
+ 8u
15
+ 25u
13
+ 36u
11
+ 19u
9
4u
7
2u
5
+ 2u
3
3u
u
19
9u
17
32u
15
55u
13
43u
11
9u
9
4u
5
+ u
3
+ u
a
6
=
u
7
+ 4u
5
+ 4u
3
u
7
3u
5
2u
3
+ u
a
11
=
u
18
9u
16
32u
14
55u
12
43u
10
9u
8
4u
4
+ u
2
+ 1
u
18
+ 8u
16
+ 25u
14
+ 36u
12
+ 19u
10
4u
8
2u
6
+ 2u
4
3u
2
a
5
=
u
28
+ 13u
26
+ ··· 5u
2
+ 1
u
28
u
27
+ ··· + 2u 1
a
5
=
u
28
+ 13u
26
+ ··· 5u
2
+ 1
u
28
u
27
+ ··· + 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
27
+ 4u
26
+ 52u
25
+ 48u
24
+ 292u
23
+ 244u
22
+ 916u
21
+
668u
20
+ 1728u
19
+ 1020u
18
+ 1952u
17
+ 764u
16
+ 1228u
15
+ 84u
14
+ 396u
13
188u
12
+
168u
11
48u
10
+ 136u
9
56u
8
+ 4u
7
80u
6
20u
5
8u
4
12u
2
12u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u
29
u
28
+ ··· u 1
c
3
, c
6
u
29
5u
28
+ ··· 11u + 11
c
4
, c
5
, c
9
c
10
, c
11
u
29
u
28
+ ··· u 1
c
8
u
29
+ u
28
+ ··· 23u 13
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
y
29
+ 27y
28
+ ··· + 11y 1
c
3
, c
6
y
29
+ 19y
28
+ ··· + 2035y 121
c
4
, c
5
, c
9
c
10
, c
11
y
29
37y
28
+ ··· + 11y 1
c
8
y
29
+ 7y
28
+ ··· + 451y 169
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.701361 + 0.346462I
9.80284 + 6.46387I 15.7632 5.4182I
u = 0.701361 0.346462I
9.80284 6.46387I 15.7632 + 5.4182I
u = 0.245640 + 1.201630I
10.19110 3.45786I 15.1424 + 3.3089I
u = 0.245640 1.201630I
10.19110 + 3.45786I 15.1424 3.3089I
u = 0.171885 + 1.229330I
0.67138 + 2.87906I 14.7089 4.2830I
u = 0.171885 1.229330I
0.67138 2.87906I 14.7089 + 4.2830I
u = 0.480158 + 0.582021I
8.87707 2.41616I 13.78310 0.38790I
u = 0.480158 0.582021I
8.87707 + 2.41616I 13.78310 + 0.38790I
u = 0.650708 + 0.354585I
0.79370 4.83148I 14.1571 + 7.3194I
u = 0.650708 0.354585I
0.79370 + 4.83148I 14.1571 7.3194I
u = 0.054580 + 1.286800I
3.32000 1.28636I 8.05258 + 4.98094I
u = 0.054580 1.286800I
3.32000 + 1.28636I 8.05258 4.98094I
u = 0.696889
13.8494 19.9990
u = 0.577927 + 0.388990I
2.04166 + 1.81994I 7.79852 4.33424I
u = 0.577927 0.388990I
2.04166 1.81994I 7.79852 + 4.33424I
u = 0.480305 + 0.469181I
0.185293 + 1.088380I 12.37698 0.82894I
u = 0.480305 0.469181I
0.185293 1.088380I 12.37698 + 0.82894I
u = 0.612238
4.36553 20.8170
u = 0.18636 + 1.44283I
5.85747 1.38485I 8.54073 1.09314I
u = 0.18636 1.44283I
5.85747 + 1.38485I 8.54073 + 1.09314I
u = 0.22007 + 1.44335I
7.91796 + 4.76802I 4.71364 3.85103I
u = 0.22007 1.44335I
7.91796 4.76802I 4.71364 + 3.85103I
u = 0.24692 + 1.44056I
4.97107 8.11618I 10.00612 + 6.88913I
u = 0.24692 1.44056I
4.97107 + 8.11618I 10.00612 6.88913I
u = 0.26820 + 1.44214I
4.06372 + 9.99800I 11.72647 5.43335I
u = 0.26820 1.44214I
4.06372 9.99800I 11.72647 + 5.43335I
u = 0.14976 + 1.46219I
2.36690 0.23982I 10.11006 0.14819I
u = 0.14976 1.46219I
2.36690 + 0.23982I 10.11006 + 0.14819I
u = 0.325062
0.510553 19.4250
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u
29
u
28
+ ··· u 1
c
3
, c
6
u
29
5u
28
+ ··· 11u + 11
c
4
, c
5
, c
9
c
10
, c
11
u
29
u
28
+ ··· u 1
c
8
u
29
+ u
28
+ ··· 23u 13
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
y
29
+ 27y
28
+ ··· + 11y 1
c
3
, c
6
y
29
+ 19y
28
+ ··· + 2035y 121
c
4
, c
5
, c
9
c
10
, c
11
y
29
37y
28
+ ··· + 11y 1
c
8
y
29
+ 7y
28
+ ··· + 451y 169
7