11a
338
(K11a
338
)
A knot diagram
1
Linearized knot diagam
7 8 1 11 9 10 2 3 6 4 5
Solving Sequence
4,10
11 5
1,7
2 3 6 9 8
c
10
c
4
c
11
c
1
c
3
c
6
c
9
c
8
c
2
, c
5
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
14
+ u
13
7u
12
6u
11
+ 18u
10
+ 11u
9
18u
8
u
7
+ u
6
12u
5
+ 5u
4
+ 2u
2
+ 2a + 7u,
u
15
+ u
14
8u
13
7u
12
+ 25u
11
+ 17u
10
36u
9
12u
8
+ 19u
7
11u
6
+ 4u
5
+ 12u
4
3u
3
+ 5u
2
2u 1i
I
u
2
= h4397u
21
+ 2494u
20
+ ··· + 8689b 8433, 13086u
21
11183u
20
+ ··· + 8689a + 43189,
u
22
+ u
21
+ ··· 4u + 1i
I
u
3
= hb 1, a
2
2, u + 1i
I
u
4
= hb + 1, a, u 1i
* 4 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
14
+ u
13
+ · · · + 2a + 7u, u
15
+ u
14
+ · · · 2u 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
1
2
u
14
1
2
u
13
+ ··· u
2
7
2
u
u
a
2
=
1
2
u
14
+ 4u
12
+ ···
3
2
u +
1
2
1
2
u
13
+
1
2
u
12
+ ··· + u +
1
2
a
3
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
6
=
1
2
u
14
1
2
u
13
+ ··· u
2
5
2
u
u
a
9
=
1
2
u
13
+
1
2
u
12
+ ··· + u +
3
2
u
2
a
8
=
1
2
u
13
+
1
2
u
12
+ ··· + u +
3
2
1
2
u
13
+
1
2
u
12
+ ··· u
1
2
a
8
=
1
2
u
13
+
1
2
u
12
+ ··· + u +
3
2
1
2
u
13
+
1
2
u
12
+ ··· u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
14
+u
13
9u
12
6u
11
+32u
10
+9u
9
56u
8
+11u
7
+45u
6
38u
5
3u
4
+20u
3
16u
2
+7u16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u
15
+ 3u
14
+ ··· + 2u + 2
c
3
u
15
3u
14
+ ··· + 16u + 16
c
4
, c
5
, c
6
c
9
, c
10
, c
11
u
15
+ u
14
+ ··· 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
y
15
17y
14
+ ··· + 36y 4
c
3
y
15
y
14
+ ··· + 5376y 256
c
4
, c
5
, c
6
c
9
, c
10
, c
11
y
15
17y
14
+ ··· + 14y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.279761 + 0.693754I
a = 0.39605 1.71486I
b = 0.279761 + 0.693754I
5.13135 3.51735I 12.62019 + 4.61757I
u = 0.279761 0.693754I
a = 0.39605 + 1.71486I
b = 0.279761 0.693754I
5.13135 + 3.51735I 12.62019 4.61757I
u = 0.103670 + 0.625168I
a = 0.16824 1.53722I
b = 0.103670 + 0.625168I
1.57961 + 1.61537I 7.48885 5.36345I
u = 0.103670 0.625168I
a = 0.16824 + 1.53722I
b = 0.103670 0.625168I
1.57961 1.61537I 7.48885 + 5.36345I
u = 1.395200 + 0.215840I
a = 0.96796 1.31763I
b = 1.395200 + 0.215840I
6.90209 + 4.05844I 16.6421 2.1211I
u = 1.395200 0.215840I
a = 0.96796 + 1.31763I
b = 1.395200 0.215840I
6.90209 4.05844I 16.6421 + 2.1211I
u = 1.409280 + 0.090877I
a = 1.33372 0.62354I
b = 1.409280 + 0.090877I
11.36840 0.36520I 21.3793 0.0972I
u = 1.409280 0.090877I
a = 1.33372 + 0.62354I
b = 1.409280 0.090877I
11.36840 + 0.36520I 21.3793 + 0.0972I
u = 0.549904
a = 2.12645
b = 0.549904
6.65878 14.7970
u = 1.42511 + 0.29485I
a = 0.56952 1.44587I
b = 1.42511 + 0.29485I
8.40818 8.56529I 18.2568 + 6.8115I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.42511 0.29485I
a = 0.56952 + 1.44587I
b = 1.42511 0.29485I
8.40818 + 8.56529I 18.2568 6.8115I
u = 1.46834 + 0.35221I
a = 0.29255 1.43453I
b = 1.46834 + 0.35221I
16.3316 + 11.5420I 20.2839 5.7615I
u = 1.46834 0.35221I
a = 0.29255 + 1.43453I
b = 1.46834 0.35221I
16.3316 11.5420I 20.2839 + 5.7615I
u = 1.57631
a = 0.547004
b = 1.57631
18.0535 22.5120
u = 0.267461
a = 0.843597
b = 0.267461
0.517394 19.3490
6
II. I
u
2
= h4397u
21
+ 2494u
20
+ · · · + 8689b 8433, 13086u
21
11183u
20
+
· · · + 8689a + 43189, u
22
+ u
21
+ · · · 4u + 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
1.50604u
21
+ 1.28703u
20
+ ··· + 2.95753u 4.97054
0.506042u
21
0.287030u
20
+ ··· 0.957533u + 0.970537
a
2
=
1.52630u
21
+ 1.89688u
20
+ ··· + 2.92945u 5.70986
0.338129u
21
0.100817u
20
+ ··· 0.394867u + 1.34170
a
3
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
6
=
u
21
+ u
20
+ ··· + 2u 4
0.506042u
21
0.287030u
20
+ ··· 0.957533u + 0.970537
a
9
=
0.970537u
21
1.47658u
20
+ ··· 1.94994u + 3.92462
0.219013u
21
+ 0.156520u
20
+ ··· 1.05363u 0.493958
a
8
=
1.07538u
21
1.10485u
20
+ ··· 0.327310u + 3.25147
0.270917u
21
0.0317643u
20
+ ··· 0.124410u 1.11152
a
8
=
1.07538u
21
1.10485u
20
+ ··· 0.327310u + 3.25147
0.270917u
21
0.0317643u
20
+ ··· 0.124410u 1.11152
(ii) Obstruction class = 1
(iii) Cusp Shapes =
416
8689
u
21
+
20424
8689
u
20
+ ··· +
62616
8689
u
136830
8689
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
(u
11
u
10
6u
9
+ 5u
8
+ 12u
7
6u
6
10u
5
u
4
+ 5u
3
+ u
2
1)
2
c
3
(u
11
3u
10
+ 4u
9
u
8
+ 2u
7
8u
6
+ 8u
5
+ 5u
4
3u
3
u
2
+ 4u 1)
2
c
4
, c
5
, c
6
c
9
, c
10
, c
11
u
22
+ u
21
+ ··· 4u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
(y
11
13y
10
+ ··· + 2y 1)
2
c
3
(y
11
y
10
+ ··· + 14y 1)
2
c
4
, c
5
, c
6
c
9
, c
10
, c
11
y
22
17y
21
+ ··· 12y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.334370 + 0.901281I
a = 1.05362 + 1.24487I
b = 1.41545 0.26957I
10.55470 7.02220I 17.5005 + 4.8862I
u = 0.334370 0.901281I
a = 1.05362 1.24487I
b = 1.41545 + 0.26957I
10.55470 + 7.02220I 17.5005 4.8862I
u = 0.822913 + 0.425984I
a = 0.303790 + 0.400055I
b = 1.262170 + 0.096055I
4.57983 0.45477I 19.1951 + 1.3696I
u = 0.822913 0.425984I
a = 0.303790 0.400055I
b = 1.262170 0.096055I
4.57983 + 0.45477I 19.1951 1.3696I
u = 0.924302 + 0.651091I
a = 0.689229 + 0.359885I
b = 1.41233 + 0.14948I
12.32850 + 1.64593I 20.0499 0.2448I
u = 0.924302 0.651091I
a = 0.689229 0.359885I
b = 1.41233 0.14948I
12.32850 1.64593I 20.0499 + 0.2448I
u = 0.293652 + 0.759801I
a = 0.88260 + 1.38298I
b = 1.325160 0.237888I
2.91318 + 4.75030I 14.6411 6.7769I
u = 0.293652 0.759801I
a = 0.88260 1.38298I
b = 1.325160 + 0.237888I
2.91318 4.75030I 14.6411 + 6.7769I
u = 0.813623
a = 1.53185
b = 0.302775
6.67244 14.1860
u = 1.203660 + 0.173836I
a = 0.570025 + 0.642766I
b = 0.243800 0.525231I
1.65360 + 1.27541I 10.52055 0.80097I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.203660 0.173836I
a = 0.570025 0.642766I
b = 0.243800 + 0.525231I
1.65360 1.27541I 10.52055 + 0.80097I
u = 1.262170 + 0.096055I
a = 0.035190 0.366036I
b = 0.822913 + 0.425984I
4.57983 0.45477I 19.1951 + 1.3696I
u = 1.262170 0.096055I
a = 0.035190 + 0.366036I
b = 0.822913 0.425984I
4.57983 + 0.45477I 19.1951 1.3696I
u = 1.325160 + 0.237888I
a = 0.437415 + 0.891040I
b = 0.293652 0.759801I
2.91318 4.75030I 14.6411 + 6.7769I
u = 1.325160 0.237888I
a = 0.437415 0.891040I
b = 0.293652 + 0.759801I
2.91318 + 4.75030I 14.6411 6.7769I
u = 1.41233 + 0.14948I
a = 0.224093 0.576984I
b = 0.924302 + 0.651091I
12.32850 + 1.64593I 20.0499 0.2448I
u = 1.41233 0.14948I
a = 0.224093 + 0.576984I
b = 0.924302 0.651091I
12.32850 1.64593I 20.0499 + 0.2448I
u = 0.243800 + 0.525231I
a = 0.47656 + 1.74026I
b = 1.203660 0.173836I
1.65360 1.27541I 10.52055 + 0.80097I
u = 0.243800 0.525231I
a = 0.47656 1.74026I
b = 1.203660 + 0.173836I
1.65360 + 1.27541I 10.52055 0.80097I
u = 1.41545 + 0.26957I
a = 0.347391 + 1.031120I
b = 0.334370 0.901281I
10.55470 + 7.02220I 17.5005 4.8862I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41545 0.26957I
a = 0.347391 1.031120I
b = 0.334370 + 0.901281I
10.55470 7.02220I 17.5005 + 4.8862I
u = 0.302775
a = 4.11640
b = 0.813623
6.67244 14.1860
12
III. I
u
3
= hb 1, a
2
2, u + 1i
(i) Arc colorings
a
4
=
0
1
a
10
=
1
0
a
11
=
1
1
a
5
=
1
0
a
1
=
0
1
a
7
=
a
1
a
2
=
2
a + 1
a
3
=
0
1
a
6
=
a + 1
1
a
9
=
a
1
a
8
=
a
a 1
a
8
=
a
a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u
2
2
c
3
u
2
c
4
, c
9
(u 1)
2
c
5
, c
6
, c
10
c
11
(u + 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
(y 2)
2
c
3
y
2
c
4
, c
5
, c
6
c
9
, c
10
, c
11
(y 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.41421
b = 1.00000
8.22467 20.0000
u = 1.00000
a = 1.41421
b = 1.00000
8.22467 20.0000
16
IV. I
u
4
= hb + 1, a, u 1i
(i) Arc colorings
a
4
=
0
1
a
10
=
1
0
a
11
=
1
1
a
5
=
1
0
a
1
=
0
1
a
7
=
0
1
a
2
=
0
1
a
3
=
0
1
a
6
=
1
1
a
9
=
0
1
a
8
=
0
1
a
8
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
u
c
4
, c
9
u + 1
c
5
, c
6
, c
10
c
11
u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
y
c
4
, c
5
, c
6
c
9
, c
10
, c
11
y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u(u
2
2)
· (u
11
u
10
6u
9
+ 5u
8
+ 12u
7
6u
6
10u
5
u
4
+ 5u
3
+ u
2
1)
2
· (u
15
+ 3u
14
+ ··· + 2u + 2)
c
3
u
3
(u
11
3u
10
+ 4u
9
u
8
+ 2u
7
8u
6
+ 8u
5
+ 5u
4
3u
3
u
2
+ 4u 1)
2
· (u
15
3u
14
+ ··· + 16u + 16)
c
4
, c
9
((u 1)
2
)(u + 1)(u
15
+ u
14
+ ··· 2u 1)(u
22
+ u
21
+ ··· 4u + 1)
c
5
, c
6
, c
10
c
11
(u 1)(u + 1)
2
(u
15
+ u
14
+ ··· 2u 1)(u
22
+ u
21
+ ··· 4u + 1)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
y(y 2)
2
(y
11
13y
10
+ ··· + 2y 1)
2
(y
15
17y
14
+ ··· + 36y 4)
c
3
y
3
(y
11
y
10
+ ··· + 14y 1)
2
(y
15
y
14
+ ··· + 5376y 256)
c
4
, c
5
, c
6
c
9
, c
10
, c
11
((y 1)
3
)(y
15
17y
14
+ ··· + 14y 1)(y
22
17y
21
+ ··· 12y + 1)
22