11a
339
(K11a
339
)
A knot diagram
1
Linearized knot diagam
7 8 1 11 10 9 2 3 6 4 5
Solving Sequence
4,10
11 5 6 1 3 9 7 8 2
c
10
c
4
c
5
c
11
c
3
c
9
c
6
c
8
c
2
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
27
u
26
+ ··· 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
27
u
26
+ · · · 2u + 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
6
=
u
3
2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
9
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
7
=
u
9
4u
7
+ 5u
5
3u
u
9
+ 3u
7
3u
5
+ u
a
8
=
u
18
+ 7u
16
20u
14
+ 27u
12
11u
10
13u
8
+ 16u
6
6u
4
+ u
2
+ 1
u
20
+ 8u
18
26u
16
+ 40u
14
19u
12
24u
10
+ 30u
8
2u
6
5u
4
2u
2
a
2
=
u
22
9u
20
+ ··· 4u
2
+ 1
u
22
+ 8u
20
+ ··· + 4u
4
+ 3u
2
a
2
=
u
22
9u
20
+ ··· 4u
2
+ 1
u
22
+ 8u
20
+ ··· + 4u
4
+ 3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4u
24
+36u
22
+4u
21
140u
20
32u
19
+284u
18
+108u
17
256u
16
180u
15
96u
14
+104u
13
+
440u
12
+120u
11
296u
10
216u
9
112u
8
+56u
7
+192u
6
+80u
5
16u
4
36u
3
32u
2
8u14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u
27
+ u
26
+ ··· 2u 1
c
3
, c
5
, c
6
c
9
u
27
3u
26
+ ··· + 4u 1
c
4
, c
10
, c
11
u
27
+ u
26
+ ··· 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
y
27
29y
26
+ ··· + 10y 1
c
3
, c
5
, c
6
c
9
y
27
+ 31y
26
+ ··· + 22y 1
c
4
, c
10
, c
11
y
27
21y
26
+ ··· + 10y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.013123 + 0.894482I
9.43523 2.24680I 6.17904 + 3.02780I
u = 0.013123 0.894482I
9.43523 + 2.24680I 6.17904 3.02780I
u = 0.041452 + 0.892930I
2.82267 + 5.43200I 9.64025 3.04274I
u = 0.041452 0.892930I
2.82267 5.43200I 9.64025 + 3.04274I
u = 1.162550 + 0.167516I
1.60577 1.16599I 9.70330 + 0.15957I
u = 1.162550 0.167516I
1.60577 + 1.16599I 9.70330 0.15957I
u = 0.781754 + 0.091734I
6.68333 0.00498I 14.6673 0.4486I
u = 0.781754 0.091734I
6.68333 + 0.00498I 14.6673 + 0.4486I
u = 1.25317
4.90599 20.0000
u = 1.255670 + 0.210110I
2.66095 + 4.20438I 14.1782 7.6940I
u = 1.255670 0.210110I
2.66095 4.20438I 14.1782 + 7.6940I
u = 1.243220 + 0.434957I
0.891189 0.687706I 12.83371 0.18639I
u = 1.243220 0.434957I
0.891189 + 0.687706I 12.83371 + 0.18639I
u = 1.33611
12.4088 20.5520
u = 1.319890 + 0.213766I
9.80481 5.99282I 17.3414 + 5.5228I
u = 1.319890 0.213766I
9.80481 + 5.99282I 17.3414 5.5228I
u = 1.269780 + 0.428859I
5.53802 2.48385I 9.46346 + 0.15279I
u = 1.269780 0.428859I
5.53802 + 2.48385I 9.46346 0.15279I
u = 1.290860 + 0.422984I
5.37877 + 6.95944I 9.93623 6.05202I
u = 1.290860 0.422984I
5.37877 6.95944I 9.93623 + 6.05202I
u = 0.232231 + 0.591655I
4.98362 + 3.14884I 11.41725 4.81307I
u = 0.232231 0.591655I
4.98362 3.14884I 11.41725 + 4.81307I
u = 1.310480 + 0.415835I
1.39565 10.11710I 13.4570 + 5.7483I
u = 1.310480 0.415835I
1.39565 + 10.11710I 13.4570 5.7483I
u = 0.090324 + 0.551346I
1.43201 1.45915I 6.27932 + 5.94435I
u = 0.090324 0.551346I
1.43201 + 1.45915I 6.27932 5.94435I
u = 0.275134
0.522013 19.2550
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
8
u
27
+ u
26
+ ··· 2u 1
c
3
, c
5
, c
6
c
9
u
27
3u
26
+ ··· + 4u 1
c
4
, c
10
, c
11
u
27
+ u
26
+ ··· 2u 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
y
27
29y
26
+ ··· + 10y 1
c
3
, c
5
, c
6
c
9
y
27
+ 31y
26
+ ··· + 22y 1
c
4
, c
10
, c
11
y
27
21y
26
+ ··· + 10y 1
7