11a
341
(K11a
341
)
A knot diagram
1
Linearized knot diagam
8 7 1 11 10 9 2 3 6 4 5
Solving Sequence
4,10
11 5 6 1 3 9 7 2 8
c
10
c
4
c
5
c
11
c
3
c
9
c
6
c
2
c
8
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
30
u
29
+ ··· + u 1i
* 1 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
30
u
29
+ · · · + u 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
6
=
u
3
2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
9
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
7
=
u
9
4u
7
+ 5u
5
3u
u
9
+ 3u
7
3u
5
+ u
a
2
=
u
25
10u
23
+ ··· + 10u
3
+ u
u
25
+ 9u
23
+ ··· 2u
3
+ u
a
8
=
u
18
+ 7u
16
20u
14
+ 27u
12
11u
10
13u
8
+ 16u
6
6u
4
+ u
2
+ 1
u
20
+ 8u
18
26u
16
+ 40u
14
19u
12
24u
10
+ 30u
8
2u
6
5u
4
2u
2
a
8
=
u
18
+ 7u
16
20u
14
+ 27u
12
11u
10
13u
8
+ 16u
6
6u
4
+ u
2
+ 1
u
20
+ 8u
18
26u
16
+ 40u
14
19u
12
24u
10
+ 30u
8
2u
6
5u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
27
40u
25
4u
24
+ 176u
23
+ 36u
22
420u
21
140u
20
+
508u
19
+ 284u
18
52u
17
256u
16
716u
15
96u
14
+ 840u
13
+ 440u
12
64u
11
296u
10
520u
9
112u
8
+ 264u
7
+ 192u
6
+ 96u
5
16u
4
64u
3
32u
2
16u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u
30
u
29
+ ··· u 1
c
3
, c
5
, c
6
c
9
u
30
3u
29
+ ··· 7u + 3
c
4
, c
10
, c
11
u
30
+ u
29
+ ··· u 1
c
8
u
30
+ u
29
+ ··· 135u 53
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
y
30
+ 29y
29
+ ··· 9y + 1
c
3
, c
5
, c
6
c
9
y
30
+ 37y
29
+ ··· 49y + 9
c
4
, c
10
, c
11
y
30
23y
29
+ ··· 9y + 1
c
8
y
30
+ 17y
29
+ ··· + 12939y + 2809
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.025624 + 0.918937I
16.4000 + 5.6172I 2.30571 2.94796I
u = 0.025624 0.918937I
16.4000 5.6172I 2.30571 + 2.94796I
u = 0.011432 + 0.903800I
9.93135 2.26722I 5.50678 + 2.95936I
u = 0.011432 0.903800I
9.93135 + 2.26722I 5.50678 2.95936I
u = 1.077260 + 0.280883I
4.37079 0.39876I 5.65256 0.33151I
u = 1.077260 0.280883I
4.37079 + 0.39876I 5.65256 + 0.33151I
u = 1.170380 + 0.182149I
1.55681 1.24454I 9.57026 + 0.01940I
u = 1.170380 0.182149I
1.55681 + 1.24454I 9.57026 0.01940I
u = 1.26925
5.06052 19.4190
u = 1.259720 + 0.224875I
2.55759 + 4.40021I 13.4404 7.3156I
u = 1.259720 0.224875I
2.55759 4.40021I 13.4404 + 7.3156I
u = 1.291240 + 0.080442I
1.40610 2.59166I 13.13861 + 3.85906I
u = 1.291240 0.080442I
1.40610 + 2.59166I 13.13861 3.85906I
u = 0.133435 + 0.677542I
7.12139 + 3.97751I 2.60373 4.61085I
u = 0.133435 0.677542I
7.12139 3.97751I 2.60373 + 4.61085I
u = 1.289930 + 0.269184I
2.71542 7.35959I 8.50810 + 6.87083I
u = 1.289930 0.269184I
2.71542 + 7.35959I 8.50810 6.87083I
u = 1.266670 + 0.453503I
12.55710 0.72268I 5.44447 0.15080I
u = 1.266670 0.453503I
12.55710 + 0.72268I 5.44447 + 0.15080I
u = 1.274060 + 0.435895I
6.01443 2.51871I 8.78607 + 0.11545I
u = 1.274060 0.435895I
6.01443 + 2.51871I 8.78607 0.11545I
u = 1.292280 + 0.430300I
5.87624 + 7.03616I 9.16949 5.90820I
u = 1.292280 0.430300I
5.87624 7.03616I 9.16949 + 5.90820I
u = 1.306330 + 0.437358I
12.2507 10.4619I 5.88987 + 5.77440I
u = 1.306330 0.437358I
12.2507 + 10.4619I 5.88987 5.77440I
u = 0.085803 + 0.574843I
1.55006 1.51308I 5.97054 + 5.56899I
u = 0.085803 0.574843I
1.55006 + 1.51308I 5.97054 5.56899I
u = 0.384081 + 0.329837I
3.55481 + 1.33307I 6.99438 4.68394I
u = 0.384081 0.329837I
3.55481 1.33307I 6.99438 + 4.68394I
u = 0.289035
0.539047 18.6190
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u
30
u
29
+ ··· u 1
c
3
, c
5
, c
6
c
9
u
30
3u
29
+ ··· 7u + 3
c
4
, c
10
, c
11
u
30
+ u
29
+ ··· u 1
c
8
u
30
+ u
29
+ ··· 135u 53
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
y
30
+ 29y
29
+ ··· 9y + 1
c
3
, c
5
, c
6
c
9
y
30
+ 37y
29
+ ··· 49y + 9
c
4
, c
10
, c
11
y
30
23y
29
+ ··· 9y + 1
c
8
y
30
+ 17y
29
+ ··· + 12939y + 2809
7