11a
346
(K11a
346
)
A knot diagram
1
Linearized knot diagam
9 6 1 10 8 3 11 2 4 5 7
Solving Sequence
4,9
10 5
2,11
1 3 8 6 7
c
9
c
4
c
10
c
1
c
3
c
8
c
5
c
7
c
2
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1008847383871263u
22
3396732854999791u
21
+ ··· + 181088774400128b + 21567640743990884,
6.16209 × 10
15
u
22
2.06878 × 10
16
u
21
+ ··· + 1.44871 × 10
15
a + 1.32864 × 10
17
, u
23
3u
22
+ ··· + 32u + 8i
I
u
2
= h−3u
14
a + 3u
14
+ ··· 4a + 11, 4u
13
a 10u
14
+ ··· 7a + 9,
u
15
+ u
14
8u
13
7u
12
+ 24u
11
+ 16u
10
34u
9
11u
8
+ 26u
7
2u
6
14u
5
+ 4u
3
2u
2
2u + 1i
I
u
3
= h−u
3
+ b, 2u
3
u
2
+ 3a 2u + 2, u
4
u
2
+ 1i
I
u
4
= hb 1, 4a u 2, u
2
2i
I
v
1
= ha, b + 1, 2v 1i
* 5 irreducible components of dim
C
= 0, with total 60 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.01×10
15
u
22
3.40×10
15
u
21
+· · ·+1.81×10
14
b+2.16×10
16
, 6.16×10
15
u
22
2.07 × 10
16
u
21
+ · · · + 1.45 × 10
15
a + 1.33 × 10
17
, u
23
3u
22
+ · · · + 32u + 8i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
2
=
4.25350u
22
+ 14.2802u
21
+ ··· 118.218u 91.7123
5.57101u
22
+ 18.7573u
21
+ ··· 156.448u 119.100
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
1.31751u
22
4.47711u
21
+ ··· + 38.2301u + 27.3876
5.57101u
22
+ 18.7573u
21
+ ··· 156.448u 119.100
a
3
=
1.61065u
22
5.45740u
21
+ ··· + 46.8384u + 34.3216
3.62502u
22
+ 12.1065u
21
+ ··· 98.5783u 76.1785
a
8
=
4.41830u
22
14.8886u
21
+ ··· + 124.465u + 95.9089
5.10401u
22
+ 17.3034u
21
+ ··· 145.763u 110.227
a
6
=
2.20822u
22
7.37326u
21
+ ··· + 58.8694u + 46.8606
3.43785u
22
+ 11.6995u
21
+ ··· 99.4184u 75.1934
a
7
=
9.17396u
22
30.9875u
21
+ ··· + 260.065u + 198.655
3.69653u
22
+ 12.5177u
21
+ ··· 104.337u 79.2171
a
7
=
9.17396u
22
30.9875u
21
+ ··· + 260.065u + 198.655
3.69653u
22
+ 12.5177u
21
+ ··· 104.337u 79.2171
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
21095773583741443
724355097600512
u
22
70909832069661843
724355097600512
u
21
+···+
291942728421964629
362177548800256
u+
110222214152642677
181088774400128
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
8
c
11
u
23
+ u
22
+ ··· 14u 1
c
2
, c
6
u
23
+ 2u
22
+ ··· + 71u + 8
c
3
, c
5
8(8u
23
20u
22
+ ··· u 1)
c
4
, c
9
, c
10
u
23
3u
22
+ ··· + 32u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
8
c
11
y
23
+ 19y
22
+ ··· + 112y 1
c
2
, c
6
y
23
14y
22
+ ··· + 5473y 64
c
3
, c
5
64(64y
23
1392y
22
+ ··· 37y 1)
c
4
, c
9
, c
10
y
23
23y
22
+ ··· + 672y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.047880 + 0.229903I
a = 0.109158 + 1.230280I
b = 0.386436 + 0.666877I
2.01223 3.75776I 5.33334 + 8.56871I
u = 1.047880 0.229903I
a = 0.109158 1.230280I
b = 0.386436 0.666877I
2.01223 + 3.75776I 5.33334 8.56871I
u = 0.692389 + 0.871381I
a = 0.897014 0.766268I
b = 0.39680 1.43332I
10.7273 + 10.3813I 10.18639 6.73732I
u = 0.692389 0.871381I
a = 0.897014 + 0.766268I
b = 0.39680 + 1.43332I
10.7273 10.3813I 10.18639 + 6.73732I
u = 1.102990 + 0.279147I
a = 0.429797 + 0.902073I
b = 0.420512 + 0.719649I
2.03566 + 0.84759I 5.54570 + 1.19524I
u = 1.102990 0.279147I
a = 0.429797 0.902073I
b = 0.420512 0.719649I
2.03566 0.84759I 5.54570 1.19524I
u = 0.541402 + 1.015810I
a = 0.411809 0.360048I
b = 0.19561 1.40284I
10.15960 4.19504I 11.29932 + 2.35235I
u = 0.541402 1.015810I
a = 0.411809 + 0.360048I
b = 0.19561 + 1.40284I
10.15960 + 4.19504I 11.29932 2.35235I
u = 0.730490 + 1.031710I
a = 0.548976 + 0.681598I
b = 0.109506 + 1.309220I
5.14680 3.47388I 11.56230 + 3.97702I
u = 0.730490 1.031710I
a = 0.548976 0.681598I
b = 0.109506 1.309220I
5.14680 + 3.47388I 11.56230 3.97702I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.39374
a = 0.389467
b = 0.880255
3.32968 1.46420
u = 1.39683
a = 0.773044
b = 0.0971819
6.54656 14.0370
u = 0.050314 + 0.470724I
a = 0.460344 + 0.114610I
b = 0.565086 + 0.372468I
0.87976 + 1.13203I 3.15244 4.47998I
u = 0.050314 0.470724I
a = 0.460344 0.114610I
b = 0.565086 0.372468I
0.87976 1.13203I 3.15244 + 4.47998I
u = 1.53229
a = 0.978209
b = 1.69273
6.97375 13.5440
u = 0.373071
a = 0.558791
b = 1.23682
0.342193 19.7630
u = 0.370526
a = 1.73277
b = 0.310175
1.09471 11.6780
u = 1.61554 + 0.28548I
a = 0.64560 1.80607I
b = 0.54587 1.52621I
18.3248 14.6898I 11.82186 + 6.64707I
u = 1.61554 0.28548I
a = 0.64560 + 1.80607I
b = 0.54587 + 1.52621I
18.3248 + 14.6898I 11.82186 6.64707I
u = 1.66263 + 0.29375I
a = 0.52389 + 1.66284I
b = 0.33582 + 1.42592I
13.1520 + 8.3676I 10.67653 4.81997I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.66263 0.29375I
a = 0.52389 1.66284I
b = 0.33582 1.42592I
13.1520 8.3676I 10.67653 + 4.81997I
u = 1.65930 + 0.36622I
a = 0.58924 1.42409I
b = 0.04263 1.48432I
17.3595 1.0921I 13.73412 + 0.I
u = 1.65930 0.36622I
a = 0.58924 + 1.42409I
b = 0.04263 + 1.48432I
17.3595 + 1.0921I 13.73412 + 0.I
7
II. I
u
2
=
h−3u
14
a+3u
14
+· · ·−4a+11, 4u
13
a10u
14
+· · ·−7a+9, u
15
+u
14
+· · ·−2u+1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
2
=
a
3
7
u
14
a
3
7
u
14
+ ··· +
4
7
a
11
7
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
3
7
u
14
a +
3
7
u
14
+ ··· +
3
7
a +
11
7
3
7
u
14
a
3
7
u
14
+ ··· +
4
7
a
11
7
a
3
=
2.28571au
14
2.71429u
14
+ ··· + 1.28571a 3.28571
8
7
u
14
a
6
7
u
14
+ ···
6
7
a
22
7
a
8
=
3
7
u
14
a +
25
7
u
14
+ ··· +
11
7
a
25
7
3
7
u
14
a +
3
7
u
14
+ ···
4
7
a
3
7
a
6
=
6
7
u
14
a +
43
7
u
14
+ ··· +
22
7
a
8
7
12
7
u
14
a +
16
7
u
14
+ ··· +
9
7
a
9
7
a
7
=
3
7
u
14
a +
25
7
u
14
+ ··· +
11
7
a
32
7
1
a
7
=
3
7
u
14
a +
25
7
u
14
+ ··· +
11
7
a
32
7
1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
13
32u
11
+ 92u
9
4u
8
112u
7
+ 20u
6
+ 56u
5
28u
4
20u
3
+ 8u
2
+ 4u 14
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
8
c
11
u
30
3u
29
+ ··· + 8u + 13
c
2
, c
6
(u
15
+ u
14
+ ··· 2u 1)
2
c
3
, c
5
u
30
+ 3u
29
+ ··· 67460u + 14279
c
4
, c
9
, c
10
(u
15
+ u
14
+ ··· 2u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
8
c
11
y
30
+ 23y
29
+ ··· 1572y + 169
c
2
, c
6
(y
15
13y
14
+ ··· + 8y 1)
2
c
3
, c
5
y
30
21y
29
+ ··· 2895344340y + 203889841
c
4
, c
9
, c
10
(y
15
17y
14
+ ··· + 8y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.837202
a = 0.948699 + 0.418317I
b = 0.455272 + 1.273510I
8.81535 13.0390
u = 0.837202
a = 0.948699 0.418317I
b = 0.455272 1.273510I
8.81535 13.0390
u = 0.616241 + 0.538656I
a = 0.877744 0.781079I
b = 0.37957 1.41365I
5.47316 5.45324I 7.99532 + 6.35130I
u = 0.616241 + 0.538656I
a = 0.634060 + 0.127928I
b = 0.991485 + 0.204855I
5.47316 5.45324I 7.99532 + 6.35130I
u = 0.616241 0.538656I
a = 0.877744 + 0.781079I
b = 0.37957 + 1.41365I
5.47316 + 5.45324I 7.99532 6.35130I
u = 0.616241 0.538656I
a = 0.634060 0.127928I
b = 0.991485 0.204855I
5.47316 + 5.45324I 7.99532 6.35130I
u = 0.486836 + 0.521522I
a = 0.982556 + 0.802109I
b = 0.186786 + 1.050900I
1.11561 + 1.81248I 2.14381 4.33913I
u = 0.486836 + 0.521522I
a = 0.275176 + 0.534678I
b = 0.373462 + 0.000206I
1.11561 + 1.81248I 2.14381 4.33913I
u = 0.486836 0.521522I
a = 0.982556 0.802109I
b = 0.186786 1.050900I
1.11561 1.81248I 2.14381 + 4.33913I
u = 0.486836 0.521522I
a = 0.275176 0.534678I
b = 0.373462 0.000206I
1.11561 1.81248I 2.14381 + 4.33913I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.309525 + 0.567792I
a = 1.61115 + 0.22060I
b = 0.116215 1.234430I
4.58881 + 1.64925I 5.60633 0.16522I
u = 0.309525 + 0.567792I
a = 0.47283 1.80977I
b = 0.497171 + 0.372159I
4.58881 + 1.64925I 5.60633 0.16522I
u = 0.309525 0.567792I
a = 1.61115 0.22060I
b = 0.116215 + 1.234430I
4.58881 1.64925I 5.60633 + 0.16522I
u = 0.309525 0.567792I
a = 0.47283 + 1.80977I
b = 0.497171 0.372159I
4.58881 1.64925I 5.60633 + 0.16522I
u = 1.48203 + 0.05428I
a = 1.80599 + 0.58512I
b = 0.312806 + 0.818632I
10.05370 + 0.15908I 9.79403 + 0.85194I
u = 1.48203 + 0.05428I
a = 0.39717 3.25376I
b = 0.085684 1.202650I
10.05370 + 0.15908I 9.79403 + 0.85194I
u = 1.48203 0.05428I
a = 1.80599 0.58512I
b = 0.312806 0.818632I
10.05370 0.15908I 9.79403 0.85194I
u = 1.48203 0.05428I
a = 0.39717 + 3.25376I
b = 0.085684 + 1.202650I
10.05370 0.15908I 9.79403 0.85194I
u = 1.52656 + 0.13829I
a = 0.104118 0.130246I
b = 0.839538 0.236157I
7.81260 4.11725I 6.59688 + 3.71929I
u = 1.52656 + 0.13829I
a = 0.49462 + 2.01049I
b = 0.298420 + 1.343440I
7.81260 4.11725I 6.59688 + 3.71929I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.52656 0.13829I
a = 0.104118 + 0.130246I
b = 0.839538 + 0.236157I
7.81260 + 4.11725I 6.59688 3.71929I
u = 1.52656 0.13829I
a = 0.49462 2.01049I
b = 0.298420 1.343440I
7.81260 + 4.11725I 6.59688 3.71929I
u = 1.57098 + 0.16034I
a = 0.532723 + 0.450416I
b = 1.381210 + 0.203773I
12.8088 + 8.0168I 11.04132 4.89679I
u = 1.57098 + 0.16034I
a = 0.31812 1.99419I
b = 0.55486 1.65691I
12.8088 + 8.0168I 11.04132 4.89679I
u = 1.57098 0.16034I
a = 0.532723 0.450416I
b = 1.381210 0.203773I
12.8088 8.0168I 11.04132 + 4.89679I
u = 1.57098 0.16034I
a = 0.31812 + 1.99419I
b = 0.55486 + 1.65691I
12.8088 8.0168I 11.04132 + 4.89679I
u = 0.404272
a = 2.91327 + 2.87968I
b = 0.150080 + 1.033230I
3.88780 12.6280
u = 0.404272
a = 2.91327 2.87968I
b = 0.150080 1.033230I
3.88780 12.6280
u = 1.60797
a = 0.13231 + 1.72692I
b = 0.75703 + 1.64902I
17.0919 13.9770
u = 1.60797
a = 0.13231 1.72692I
b = 0.75703 1.64902I
17.0919 13.9770
13
III. I
u
3
= h−u
3
+ b, 2u
3
u
2
+ 3a 2u + 2, u
4
u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
2
=
2
3
u
3
+
1
3
u
2
+
2
3
u
2
3
u
3
a
11
=
u
2
+ 1
u
2
+ 1
a
1
=
1
3
u
3
+
1
3
u
2
+
2
3
u
2
3
u
3
a
3
=
1
3
u
3
+
2
3
u
2
3
2
3
u
3
2
3
u
2
+
2
3
u +
1
3
a
8
=
1
3
u
3
+
2
3
u
2
1
3
u
1
3
1
a
6
=
u
1
3
2
3
u
3
1
3
u
2
+
1
3
u
1
3
a
7
=
1
3
u
3
+
2
3
u
2
4
3
u
1
3
2u
3
+ u 1
a
7
=
1
3
u
3
+
2
3
u
2
4
3
u
1
3
2u
3
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
12
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
8
c
11
(u
2
+ 1)
2
c
2
(u
2
u + 1)
2
c
3
9(9u
4
+ 18u
3
+ 9u
2
+ 1)
c
4
, c
9
, c
10
u
4
u
2
+ 1
c
5
9(9u
4
18u
3
+ 9u
2
+ 1)
c
6
(u
2
+ u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
8
c
11
(y + 1)
4
c
2
, c
6
(y
2
+ y + 1)
2
c
3
, c
5
81(81y
4
162y
3
+ 99y
2
+ 18y + 1)
c
4
, c
9
, c
10
(y
2
y + 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.077350 + 1.288680I
b = 1.000000I
3.28987 2.02988I 10.00000 + 3.46410I
u = 0.866025 0.500000I
a = 0.077350 1.288680I
b = 1.000000I
3.28987 + 2.02988I 10.00000 3.46410I
u = 0.866025 + 0.500000I
a = 1.077350 + 0.711325I
b = 1.000000I
3.28987 + 2.02988I 10.00000 3.46410I
u = 0.866025 0.500000I
a = 1.077350 0.711325I
b = 1.000000I
3.28987 2.02988I 10.00000 + 3.46410I
17
IV. I
u
4
= hb 1, 4a u 2, u
2
2i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
2
a
5
=
u
u
a
2
=
1
4
u +
1
2
1
a
11
=
1
0
a
1
=
1
4
u
1
2
1
a
3
=
3
8
u
1
2
1
2
u +
1
2
a
8
=
1
4
u +
3
2
1
a
6
=
1
8
u + 1
1
2
u +
1
2
a
7
=
1
4
u +
1
2
1
a
7
=
1
4
u +
1
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
(u + 1)
2
c
3
4(4u
2
+ 4u 1)
c
4
, c
9
, c
10
u
2
2
c
5
4(4u
2
4u 1)
c
6
, c
7
, c
8
(u 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
11
(y 1)
2
c
3
, c
5
16(16y
2
24y + 1)
c
4
, c
9
, c
10
(y 2)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.853553
b = 1.00000
4.93480 8.00000
u = 1.41421
a = 0.146447
b = 1.00000
4.93480 8.00000
21
V. I
v
1
= ha, b + 1, 2v 1i
(i) Arc colorings
a
4
=
0.5
0
a
9
=
1
0
a
10
=
1
0
a
5
=
0.5
0
a
2
=
0
1
a
11
=
1
0
a
1
=
1
1
a
3
=
1
0.5
a
8
=
1
1
a
6
=
1
0.5
a
7
=
0
1
a
7
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4.5
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
11
u 1
c
3
2(2u + 1)
c
4
, c
9
, c
10
u
c
5
2(2u 1)
c
6
, c
7
, c
8
u + 1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
11
y 1
c
3
, c
5
4(4y 1)
c
4
, c
9
, c
10
y
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000
a = 0
b = 1.00000
0 4.50000
25
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
(u 1)(u + 1)
2
(u
2
+ 1)
2
(u
23
+ u
22
+ ··· 14u 1)
· (u
30
3u
29
+ ··· + 8u + 13)
c
2
(u 1)(u + 1)
2
(u
2
u + 1)
2
(u
15
+ u
14
+ ··· 2u 1)
2
· (u
23
+ 2u
22
+ ··· + 71u + 8)
c
3
576(2u + 1)(4u
2
+ 4u 1)(9u
4
+ 18u
3
+ 9u
2
+ 1)
· (8u
23
20u
22
+ ··· u 1)(u
30
+ 3u
29
+ ··· 67460u + 14279)
c
4
, c
9
, c
10
u(u
2
2)(u
4
u
2
+ 1)(u
15
+ u
14
+ ··· 2u + 1)
2
· (u
23
3u
22
+ ··· + 32u + 8)
c
5
576(2u 1)(4u
2
4u 1)(9u
4
18u
3
+ 9u
2
+ 1)
· (8u
23
20u
22
+ ··· u 1)(u
30
+ 3u
29
+ ··· 67460u + 14279)
c
6
((u 1)
2
)(u + 1)(u
2
+ u + 1)
2
(u
15
+ u
14
+ ··· 2u 1)
2
· (u
23
+ 2u
22
+ ··· + 71u + 8)
c
7
, c
8
((u 1)
2
)(u + 1)(u
2
+ 1)
2
(u
23
+ u
22
+ ··· 14u 1)
· (u
30
3u
29
+ ··· + 8u + 13)
26
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
8
c
11
((y 1)
3
)(y + 1)
4
(y
23
+ 19y
22
+ ··· + 112y 1)
· (y
30
+ 23y
29
+ ··· 1572y + 169)
c
2
, c
6
((y 1)
3
)(y
2
+ y + 1)
2
(y
15
13y
14
+ ··· + 8y 1)
2
· (y
23
14y
22
+ ··· + 5473y 64)
c
3
, c
5
331776(4y 1)(16y
2
24y + 1)(81y
4
162y
3
+ ··· + 18y + 1)
· (64y
23
1392y
22
+ ··· 37y 1)
· (y
30
21y
29
+ ··· 2895344340y + 203889841)
c
4
, c
9
, c
10
y(y 2)
2
(y
2
y + 1)
2
(y
15
17y
14
+ ··· + 8y 1)
2
· (y
23
23y
22
+ ··· + 672y 64)
27