11a
350
(K11a
350
)
A knot diagram
1
Linearized knot diagam
6 5 1 11 9 10 4 3 2 7 8
Solving Sequence
2,9 6,10
7 1 5 3 4 8 11
c
9
c
6
c
1
c
5
c
2
c
3
c
8
c
11
c
4
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.21880 × 10
22
u
23
1.45306 × 10
23
u
22
+ ··· + 1.84096 × 10
22
b 1.77351 × 10
21
,
1.69641 × 10
22
u
23
+ 1.16788 × 10
23
u
22
+ ··· + 1.84096 × 10
22
a + 9.02386 × 10
22
, u
24
+ 5u
23
+ ··· + 5u + 1i
I
u
2
= h−6.31384 × 10
394
u
89
+ 6.92476 × 10
394
u
88
+ ··· + 7.51178 × 10
396
b 8.98383 × 10
397
,
1.55103 × 10
397
u
89
2.32083 × 10
398
u
88
+ ··· + 5.23571 × 10
399
a + 6.11690 × 10
401
,
u
90
+ 13u
88
+ ··· 2331u 697i
I
u
3
= h596388417531502u
19
535727113968989u
18
+ ··· + 1506447924749558b 1004384011943253,
1534485576412749u
19
+ 1924336217084222u
18
+ ··· + 1506447924749558a + 5029781266974281,
u
20
+ 12u
18
+ ··· + 2u + 1i
I
u
4
= hu
3
+ u
2
+ b u 1, u
3
u
2
+ a + 2u + 1, u
4
+ u
3
u
2
u 1i
I
u
5
= hb + u, a u 1, u
2
+ u + 1i
* 5 irreducible components of dim
C
= 0, with total 140 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.22×10
22
u
23
1.45×10
23
u
22
+· · ·+1.84×10
22
b1.77×10
21
, 1.70×
10
22
u
23
+1.17×10
23
u
22
+· · ·+1.84×10
22
a+9.02×10
22
, u
24
+5u
23
+· · ·+5u+1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
6
=
0.921482u
23
6.34386u
22
+ ··· 16.1753u 4.90172
1.74844u
23
+ 7.89293u
22
+ ··· + 5.65599u + 0.0963361
a
10
=
1
u
2
a
7
=
0.803405u
23
6.36897u
22
+ ··· 20.1230u 6.54183
1.95379u
23
+ 9.10729u
22
+ ··· + 8.61541u + 0.711836
a
1
=
5.52017u
23
+ 30.5886u
22
+ ··· + 53.7538u + 10.3116
4.04248u
23
19.7310u
22
+ ··· 22.7797u 4.62275
a
5
=
0.826954u
23
+ 1.54907u
22
+ ··· 10.5193u 4.80538
1.74844u
23
+ 7.89293u
22
+ ··· + 5.65599u + 0.0963361
a
3
=
0.624051u
23
+ 5.42049u
22
+ ··· + 12.4325u + 0.988234
0.853640u
23
5.43714u
22
+ ··· 16.5416u 4.70063
a
4
=
9.64576u
23
47.9185u
22
+ ··· 65.9753u 12.2608
1.74443u
23
+ 8.33782u
22
+ ··· + 5.56945u + 0.493106
a
8
=
0.493106u
23
0.721096u
22
+ ··· + 15.8450u + 3.10392
1.56945u
23
+ 6.25870u
22
+ ··· + 0.386352u 1.03260
a
11
=
2.20692u
23
+ 13.4346u
22
+ ··· + 38.8975u + 9.36897
1.36287u
23
5.75236u
22
+ ··· + 2.19259u + 1.11471
a
11
=
2.20692u
23
+ 13.4346u
22
+ ··· + 38.8975u + 9.36897
1.36287u
23
5.75236u
22
+ ··· + 2.19259u + 1.11471
(ii) Obstruction class = 1
(iii) Cusp Shapes =
504150061088705768350224
18409584491066375925047
u
23
+
2533975755434351329384291
18409584491066375925047
u
22
+ ··· +
2937396997691488250591708
18409584491066375925047
u +
478043081351450205457199
18409584491066375925047
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
24
+ 5u
23
+ ··· + 8u + 1
c
2
, c
3
u
24
+ 3u
23
+ ··· + 3u + 1
c
5
, c
11
u
24
+ u
23
+ ··· + 7u + 1
c
6
, c
10
u
24
2u
23
+ ··· 106u + 36
c
7
, c
9
u
24
5u
23
+ ··· 5u + 1
c
8
u
24
u
23
+ ··· + 320u + 64
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
24
7y
23
+ ··· 6y + 1
c
2
, c
3
y
24
+ 3y
23
+ ··· + 27y + 1
c
5
, c
11
y
24
+ 7y
23
+ ··· 29y + 1
c
6
, c
10
y
24
12y
23
+ ··· + 9860y + 1296
c
7
, c
9
y
24
21y
23
+ ··· 5y + 1
c
8
y
24
23y
23
+ ··· + 30720y + 4096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.948562 + 0.118544I
a = 0.386832 0.880975I
b = 0.589066 0.233963I
2.99609 + 1.94907I 10.80827 2.58369I
u = 0.948562 0.118544I
a = 0.386832 + 0.880975I
b = 0.589066 + 0.233963I
2.99609 1.94907I 10.80827 + 2.58369I
u = 0.397178 + 0.844071I
a = 0.65338 + 1.54955I
b = 0.017160 0.636778I
5.31187 + 3.98651I 5.66668 8.11376I
u = 0.397178 0.844071I
a = 0.65338 1.54955I
b = 0.017160 + 0.636778I
5.31187 3.98651I 5.66668 + 8.11376I
u = 0.897247 + 0.630246I
a = 0.175373 0.678747I
b = 0.458367 + 1.128800I
1.59590 + 4.68195I 5.09129 10.67393I
u = 0.897247 0.630246I
a = 0.175373 + 0.678747I
b = 0.458367 1.128800I
1.59590 4.68195I 5.09129 + 10.67393I
u = 0.669369 + 0.399651I
a = 0.199150 + 0.717971I
b = 1.22208 1.31312I
0.94261 4.71787I 11.6555 + 14.8007I
u = 0.669369 0.399651I
a = 0.199150 0.717971I
b = 1.22208 + 1.31312I
0.94261 + 4.71787I 11.6555 14.8007I
u = 0.275157 + 0.682551I
a = 0.34003 1.57031I
b = 1.02362 + 1.39590I
5.80334 + 2.74033I 15.5158 11.8363I
u = 0.275157 0.682551I
a = 0.34003 + 1.57031I
b = 1.02362 1.39590I
5.80334 2.74033I 15.5158 + 11.8363I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.284422 + 0.660333I
a = 0.05560 2.91538I
b = 0.124798 + 1.311920I
5.07438 + 1.59386I 2.13582 1.10254I
u = 0.284422 0.660333I
a = 0.05560 + 2.91538I
b = 0.124798 1.311920I
5.07438 1.59386I 2.13582 + 1.10254I
u = 0.913544 + 0.934068I
a = 0.137387 + 0.975627I
b = 1.23496 1.04677I
2.20266 + 13.23270I 2.28061 10.36959I
u = 0.913544 0.934068I
a = 0.137387 0.975627I
b = 1.23496 + 1.04677I
2.20266 13.23270I 2.28061 + 10.36959I
u = 0.219244 + 0.655965I
a = 0.641636 + 0.616523I
b = 0.138317 0.535445I
0.112664 1.342820I 0.96375 + 5.78549I
u = 0.219244 0.655965I
a = 0.641636 0.616523I
b = 0.138317 + 0.535445I
0.112664 + 1.342820I 0.96375 5.78549I
u = 0.95916 + 1.28491I
a = 0.109942 + 1.076420I
b = 1.19384 1.00053I
3.9513 19.3243I 0.92200 + 10.02171I
u = 0.95916 1.28491I
a = 0.109942 1.076420I
b = 1.19384 + 1.00053I
3.9513 + 19.3243I 0.92200 10.02171I
u = 0.315740 + 0.142853I
a = 1.62304 + 1.34024I
b = 0.873029 + 0.698246I
0.03065 + 2.94504I 0.62404 2.53282I
u = 0.315740 0.142853I
a = 1.62304 1.34024I
b = 0.873029 0.698246I
0.03065 2.94504I 0.62404 + 2.53282I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.99393 + 1.39275I
a = 0.078356 0.752209I
b = 0.690199 + 0.960956I
7.26188 10.39510I 4.97109 + 9.26898I
u = 0.99393 1.39275I
a = 0.078356 + 0.752209I
b = 0.690199 0.960956I
7.26188 + 10.39510I 4.97109 9.26898I
u = 1.80800
a = 0.491944
b = 0.412432
0.0704593 10.7550
u = 4.60596
a = 0.0568603
b = 0.175899
0.0136435 0
7
II. I
u
2
= h−6.31 × 10
394
u
89
+ 6.92 × 10
394
u
88
+ · · · + 7.51 × 10
396
b 8.98 ×
10
397
, 1.55 × 10
397
u
89
2.32 × 10
398
u
88
+ · · · + 5.24 × 10
399
a + 6.12 ×
10
401
, u
90
+ 13u
88
+ · · · 2331u 697i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
6
=
0.00296240u
89
+ 0.0443270u
88
+ ··· 438.837u 116.830
0.00840525u
89
0.00921854u
88
+ ··· + 35.0495u + 11.9597
a
10
=
1
u
2
a
7
=
0.00615108u
89
+ 0.0463311u
88
+ ··· 509.179u 135.767
0.00721730u
89
0.00830298u
88
+ ··· + 41.9437u + 13.3565
a
1
=
0.0981362u
89
+ 0.00893073u
88
+ ··· 111.972u 57.6678
0.00924215u
89
0.00377916u
88
+ ··· + 55.6357u + 10.3743
a
5
=
0.0113676u
89
+ 0.0351084u
88
+ ··· 403.788u 104.871
0.00840525u
89
0.00921854u
88
+ ··· + 35.0495u + 11.9597
a
3
=
0.0987547u
89
+ 0.00556089u
88
+ ··· 75.5358u 48.4670
0.00862368u
89
+ 0.000409326u
88
+ ··· 17.1997u 1.17357
a
4
=
0.0318351u
89
+ 0.0633408u
88
+ ··· 419.152u 85.0975
0.00355555u
89
+ 0.00998720u
88
+ ··· 106.546u 27.9283
a
8
=
0.00442432u
89
0.0678970u
88
+ ··· + 531.689u + 122.167
0.0153682u
89
+ 0.0121057u
88
+ ··· 37.2591u 23.9882
a
11
=
0.00232107u
89
0.0476243u
88
+ ··· + 401.540u + 95.0377
0.0139733u
89
+ 0.0135534u
88
+ ··· 50.8930u 27.4980
a
11
=
0.00232107u
89
0.0476243u
88
+ ··· + 401.540u + 95.0377
0.0139733u
89
+ 0.0135534u
88
+ ··· 50.8930u 27.4980
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0316762u
89
0.0348001u
88
+ ··· + 220.805u + 45.4124
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
90
4u
89
+ ··· 679u 263
c
2
, c
3
u
90
u
89
+ ··· 675u + 103
c
5
, c
11
u
90
8u
88
+ ··· 22u 1
c
6
, c
10
(u
45
20u
43
+ ··· + 189u + 108)
2
c
7
, c
9
u
90
+ 13u
88
+ ··· + 2331u 697
c
8
(u
45
2u
44
+ ··· 45u 9)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
90
20y
89
+ ··· 4190907y + 69169
c
2
, c
3
y
90
7y
89
+ ··· + 296069y + 10609
c
5
, c
11
y
90
16y
89
+ ··· 90y + 1
c
6
, c
10
(y
45
40y
44
+ ··· 36207y 11664)
2
c
7
, c
9
y
90
+ 26y
89
+ ··· + 21978055y + 485809
c
8
(y
45
+ 20y
44
+ ··· + 2871y 81)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.650238 + 0.770616I
a = 0.756665 + 0.325666I
b = 0.157441 + 0.051744I
0.40566 1.48274I 0
u = 0.650238 0.770616I
a = 0.756665 0.325666I
b = 0.157441 0.051744I
0.40566 + 1.48274I 0
u = 0.408621 + 0.900284I
a = 0.240008 + 0.792608I
b = 0.439265 0.984349I
0.40566 1.48274I 0
u = 0.408621 0.900284I
a = 0.240008 0.792608I
b = 0.439265 + 0.984349I
0.40566 + 1.48274I 0
u = 0.167555 + 0.950964I
a = 0.199750 + 0.931839I
b = 0.748689 1.189060I
2.94180 3.09675I 0
u = 0.167555 0.950964I
a = 0.199750 0.931839I
b = 0.748689 + 1.189060I
2.94180 + 3.09675I 0
u = 0.943877 + 0.072123I
a = 0.147334 + 0.330453I
b = 1.035640 + 0.455649I
0.30613 + 2.93570I 0
u = 0.943877 0.072123I
a = 0.147334 0.330453I
b = 1.035640 0.455649I
0.30613 2.93570I 0
u = 0.332333 + 0.878248I
a = 0.071797 1.263730I
b = 0.82943 + 1.43522I
5.23865 10.99060I 0
u = 0.332333 0.878248I
a = 0.071797 + 1.263730I
b = 0.82943 1.43522I
5.23865 + 10.99060I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.479257 + 0.791392I
a = 0.235215 0.687665I
b = 1.111250 + 0.451162I
4.85797 0
u = 0.479257 0.791392I
a = 0.235215 + 0.687665I
b = 1.111250 0.451162I
4.85797 0
u = 0.220217 + 0.884440I
a = 0.15511 + 1.68010I
b = 0.58091 1.47300I
6.04090 + 0.51555I 0
u = 0.220217 0.884440I
a = 0.15511 1.68010I
b = 0.58091 + 1.47300I
6.04090 0.51555I 0
u = 0.822790 + 0.362700I
a = 1.40778 + 1.95155I
b = 0.554046 0.042311I
2.29876 9.05121I 0
u = 0.822790 0.362700I
a = 1.40778 1.95155I
b = 0.554046 + 0.042311I
2.29876 + 9.05121I 0
u = 0.314482 + 1.066300I
a = 1.03414 1.04256I
b = 0.308181 + 0.222493I
3.71252 + 2.09738I 0
u = 0.314482 1.066300I
a = 1.03414 + 1.04256I
b = 0.308181 0.222493I
3.71252 2.09738I 0
u = 0.080321 + 1.117670I
a = 0.201246 0.404214I
b = 1.095680 + 0.447288I
6.00576 + 5.14134I 0
u = 0.080321 1.117670I
a = 0.201246 + 0.404214I
b = 1.095680 0.447288I
6.00576 5.14134I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.805949 + 0.810035I
a = 0.097220 0.859841I
b = 1.21296 + 1.00009I
1.98063 + 6.23670I 0
u = 0.805949 0.810035I
a = 0.097220 + 0.859841I
b = 1.21296 1.00009I
1.98063 6.23670I 0
u = 0.495841 + 1.030740I
a = 0.330084 0.914528I
b = 1.37807 + 0.85563I
0.29490 6.42715I 0
u = 0.495841 1.030740I
a = 0.330084 + 0.914528I
b = 1.37807 0.85563I
0.29490 + 6.42715I 0
u = 0.844655 + 0.809311I
a = 0.278227 + 0.876838I
b = 1.09471 1.01763I
0.06231 4.05987I 0
u = 0.844655 0.809311I
a = 0.278227 0.876838I
b = 1.09471 + 1.01763I
0.06231 + 4.05987I 0
u = 0.202911 + 0.802221I
a = 1.83281 + 0.37418I
b = 0.152437 + 0.165462I
5.61745 + 4.44792I 7.47292 6.68943I
u = 0.202911 0.802221I
a = 1.83281 0.37418I
b = 0.152437 0.165462I
5.61745 4.44792I 7.47292 + 6.68943I
u = 0.512233 + 0.648024I
a = 1.50983 + 1.35329I
b = 0.486815 0.769300I
0.29490 6.42715I 2.19076 + 11.02163I
u = 0.512233 0.648024I
a = 1.50983 1.35329I
b = 0.486815 + 0.769300I
0.29490 + 6.42715I 2.19076 11.02163I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.543413 + 0.608268I
a = 0.392565 + 0.981854I
b = 1.43853 0.71161I
2.54435 3.08820I 4.24618 + 0.I
u = 0.543413 0.608268I
a = 0.392565 0.981854I
b = 1.43853 + 0.71161I
2.54435 + 3.08820I 4.24618 + 0.I
u = 1.20673
a = 1.28610
b = 0.717017
1.80906 0
u = 0.278683 + 0.741266I
a = 0.13737 + 2.72634I
b = 0.069665 1.049730I
6.04090 0.51555I 9.73034 + 2.24226I
u = 0.278683 0.741266I
a = 0.13737 2.72634I
b = 0.069665 + 1.049730I
6.04090 + 0.51555I 9.73034 2.24226I
u = 0.771121 + 0.933795I
a = 0.555560 + 0.322667I
b = 0.982231 + 0.006479I
2.49917 2.89475I 0
u = 0.771121 0.933795I
a = 0.555560 0.322667I
b = 0.982231 0.006479I
2.49917 + 2.89475I 0
u = 0.808260 + 0.907026I
a = 0.152451 + 1.230970I
b = 1.070580 0.882803I
2.54435 3.08820I 0
u = 0.808260 0.907026I
a = 0.152451 1.230970I
b = 1.070580 + 0.882803I
2.54435 + 3.08820I 0
u = 0.879902 + 0.854615I
a = 0.47163 1.38129I
b = 0.927006 + 0.876019I
0.07742 6.14163I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.879902 0.854615I
a = 0.47163 + 1.38129I
b = 0.927006 0.876019I
0.07742 + 6.14163I 0
u = 0.507872 + 0.568783I
a = 0.138139 1.370140I
b = 1.14598 + 0.87377I
2.49917 + 2.89475I 6.29512 4.04782I
u = 0.507872 0.568783I
a = 0.138139 + 1.370140I
b = 1.14598 0.87377I
2.49917 2.89475I 6.29512 + 4.04782I
u = 0.019987 + 0.705680I
a = 0.371096 + 0.660404I
b = 1.47903 0.84955I
5.20109 3.69707I 17.8159 + 11.7922I
u = 0.019987 0.705680I
a = 0.371096 0.660404I
b = 1.47903 + 0.84955I
5.20109 + 3.69707I 17.8159 11.7922I
u = 0.698365 + 0.048277I
a = 0.773970 1.130590I
b = 0.867504 0.055181I
3.31934 1.40971I 9.63872 + 4.90184I
u = 0.698365 0.048277I
a = 0.773970 + 1.130590I
b = 0.867504 + 0.055181I
3.31934 + 1.40971I 9.63872 4.90184I
u = 1.043390 + 0.776682I
a = 0.022328 0.666893I
b = 0.654441 + 0.081485I
3.31934 1.40971I 0
u = 1.043390 0.776682I
a = 0.022328 + 0.666893I
b = 0.654441 0.081485I
3.31934 + 1.40971I 0
u = 0.619879 + 1.143890I
a = 0.277737 + 1.211450I
b = 0.596383 0.931606I
5.61745 + 4.44792I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.619879 1.143890I
a = 0.277737 1.211450I
b = 0.596383 + 0.931606I
5.61745 4.44792I 0
u = 0.937741 + 0.997672I
a = 0.028921 0.696492I
b = 1.119420 + 0.654833I
2.70611 5.73656I 0
u = 0.937741 0.997672I
a = 0.028921 + 0.696492I
b = 1.119420 0.654833I
2.70611 + 5.73656I 0
u = 0.535466 + 0.312111I
a = 0.05537 + 2.59522I
b = 0.690775 0.155367I
2.70611 + 5.73656I 9.46948 10.34279I
u = 0.535466 0.312111I
a = 0.05537 2.59522I
b = 0.690775 + 0.155367I
2.70611 5.73656I 9.46948 + 10.34279I
u = 0.002400 + 0.566715I
a = 0.77472 1.75994I
b = 1.22053 + 0.73355I
3.71252 2.09738I 4.75808 + 1.45431I
u = 0.002400 0.566715I
a = 0.77472 + 1.75994I
b = 1.22053 0.73355I
3.71252 + 2.09738I 4.75808 1.45431I
u = 0.115651 + 0.545467I
a = 1.73050 + 4.15726I
b = 0.262196 0.749851I
3.90289 + 8.93089I 8.55811 8.07031I
u = 0.115651 0.545467I
a = 1.73050 4.15726I
b = 0.262196 + 0.749851I
3.90289 8.93089I 8.55811 + 8.07031I
u = 0.71086 + 1.28822I
a = 0.329302 1.195740I
b = 1.29161 + 0.99015I
3.90289 + 8.93089I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.71086 1.28822I
a = 0.329302 + 1.195740I
b = 1.29161 0.99015I
3.90289 8.93089I 0
u = 0.207589 + 0.469922I
a = 0.440453 1.118780I
b = 0.22781 + 1.73405I
0.06231 + 4.05987I 8.44249 + 0.74405I
u = 0.207589 0.469922I
a = 0.440453 + 1.118780I
b = 0.22781 1.73405I
0.06231 4.05987I 8.44249 0.74405I
u = 0.87421 + 1.20478I
a = 0.175207 + 0.280416I
b = 0.516903 0.721613I
0.581066 0.443460I 0
u = 0.87421 1.20478I
a = 0.175207 0.280416I
b = 0.516903 + 0.721613I
0.581066 + 0.443460I 0
u = 0.96765 + 1.13256I
a = 0.185823 + 1.017500I
b = 0.747500 0.778618I
6.00576 + 5.14134I 0
u = 0.96765 1.13256I
a = 0.185823 1.017500I
b = 0.747500 + 0.778618I
6.00576 5.14134I 0
u = 1.01755 + 1.10772I
a = 0.530821 + 0.238018I
b = 0.547374 + 0.283554I
1.98063 6.23670I 0
u = 1.01755 1.10772I
a = 0.530821 0.238018I
b = 0.547374 0.283554I
1.98063 + 6.23670I 0
u = 0.89064 + 1.22962I
a = 0.162880 + 1.145870I
b = 1.10718 1.02496I
5.23865 + 10.99060I 0
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.89064 1.22962I
a = 0.162880 1.145870I
b = 1.10718 + 1.02496I
5.23865 10.99060I 0
u = 0.23191 + 1.52682I
a = 0.908745 + 0.223836I
b = 1.057010 0.093518I
0.07742 + 6.14163I 0
u = 0.23191 1.52682I
a = 0.908745 0.223836I
b = 1.057010 + 0.093518I
0.07742 6.14163I 0
u = 1.53129 + 0.40027I
a = 0.317759 + 0.118389I
b = 0.671617 + 0.211972I
2.94180 3.09675I 0
u = 1.53129 0.40027I
a = 0.317759 0.118389I
b = 0.671617 0.211972I
2.94180 + 3.09675I 0
u = 0.072897 + 0.360777I
a = 3.76410 0.79251I
b = 0.782879 + 0.479956I
0.30613 + 2.93570I 3.28195 5.62494I
u = 0.072897 0.360777I
a = 3.76410 + 0.79251I
b = 0.782879 0.479956I
0.30613 2.93570I 3.28195 + 5.62494I
u = 1.01061 + 1.30844I
a = 0.020694 0.902939I
b = 1.12727 + 0.93260I
1.78184 10.59480I 0
u = 1.01061 1.30844I
a = 0.020694 + 0.902939I
b = 1.12727 0.93260I
1.78184 + 10.59480I 0
u = 0.91660 + 1.45408I
a = 0.243376 0.843960I
b = 1.181200 + 0.693134I
2.29876 + 9.05121I 0
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.91660 1.45408I
a = 0.243376 + 0.843960I
b = 1.181200 0.693134I
2.29876 9.05121I 0
u = 1.12939 + 1.35997I
a = 0.067763 0.640668I
b = 0.324632 + 0.690984I
5.20109 + 3.69707I 0
u = 1.12939 1.35997I
a = 0.067763 + 0.640668I
b = 0.324632 0.690984I
5.20109 3.69707I 0
u = 1.03662 + 1.44950I
a = 0.031756 + 0.678698I
b = 0.749926 0.792086I
7.04800 0
u = 1.03662 1.44950I
a = 0.031756 0.678698I
b = 0.749926 + 0.792086I
7.04800 0
u = 0.16533 + 1.80552I
a = 0.453269 + 0.136736I
b = 0.559676 0.331227I
0.581066 0.443460I 0
u = 0.16533 1.80552I
a = 0.453269 0.136736I
b = 0.559676 + 0.331227I
0.581066 + 0.443460I 0
u = 1.86135
a = 0.0776973
b = 0.886595
1.80906 0
u = 1.75907 + 0.63951I
a = 0.258182 + 0.057089I
b = 0.710115 + 0.370499I
1.78184 + 10.59480I 0
u = 1.75907 0.63951I
a = 0.258182 0.057089I
b = 0.710115 0.370499I
1.78184 10.59480I 0
19
III. I
u
3
=
h5.96×10
14
u
19
5.36×10
14
u
18
+· · ·+1.51×10
15
b1.00×10
15
, 1.53×10
15
u
19
+
1.92 × 10
15
u
18
+ · · · + 1.51 × 10
15
a + 5.03 × 10
15
, u
20
+ 12u
18
+ · · · + 2u + 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
6
=
1.01861u
19
1.27740u
18
+ ··· 5.07547u 3.33884
0.395890u
19
+ 0.355623u
18
+ ··· + 1.23689u + 0.666723
a
10
=
1
u
2
a
7
=
1.92033u
19
1.39243u
18
+ ··· 7.41199u 3.94951
0.119275u
19
+ 0.322928u
18
+ ··· + 2.36868u + 0.781758
a
1
=
0.994920u
19
+ 0.133507u
18
+ ··· 3.85818u 0.674866
1.19786u
19
0.0805278u
18
+ ··· + 2.43384u + 0.215007
a
5
=
1.41450u
19
0.921777u
18
+ ··· 3.83858u 2.67211
0.395890u
19
+ 0.355623u
18
+ ··· + 1.23689u + 0.666723
a
3
=
0.582346u
19
0.487299u
18
+ ··· 4.07779u 1.99593
0.379409u
19
0.540279u
18
+ ··· 0.653451u 1.53607
a
4
=
1.45889u
19
0.856046u
18
+ ··· 1.97045u 2.21037
0.484579u
19
+ 0.200367u
18
+ ··· 0.958662u 0.230371
a
8
=
2.21910u
19
0.232443u
18
+ ··· + 3.29375u 0.788977
0.178004u
19
0.943332u
18
+ ··· 2.46348u 1.43324
a
11
=
1.23993u
19
+ 0.574971u
18
+ ··· + 6.71591u + 2.81437
1.32381u
19
0.320403u
18
+ ··· + 1.10373u + 1.23049
a
11
=
1.23993u
19
+ 0.574971u
18
+ ··· + 6.71591u + 2.81437
1.32381u
19
0.320403u
18
+ ··· + 1.10373u + 1.23049
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
235193652872256
107603423196397
u
19
104114497130576
107603423196397
u
18
+ ···
543023431340064
107603423196397
u
204719139518847
107603423196397
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
u
19
+ ··· + 5u + 1
c
2
u
20
3u
19
+ ··· + 2u + 1
c
3
u
20
+ 3u
19
+ ··· 2u + 1
c
4
u
20
+ u
19
+ ··· 5u + 1
c
5
u
20
+ u
18
+ ··· u + 1
c
6
(u
10
3u
8
+ 2u
7
8u
5
+ 9u
4
+ 9u
3
5u
2
4u 2)
2
c
7
u
20
+ 12u
18
+ ··· 2u + 1
c
8
u
20
+ 13u
18
+ ··· + 366u
2
+ 113
c
9
u
20
+ 12u
18
+ ··· + 2u + 1
c
10
(u
10
3u
8
2u
7
+ 8u
5
+ 9u
4
9u
3
5u
2
+ 4u 2)
2
c
11
u
20
+ u
18
+ ··· + u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
20
13y
19
+ ··· + 11y + 1
c
2
, c
3
y
20
5y
19
+ ··· 6y + 1
c
5
, c
11
y
20
+ 2y
19
+ ··· + 19y + 1
c
6
, c
10
(y
10
6y
9
+ ··· + 4y + 4)
2
c
7
, c
9
y
20
+ 24y
19
+ ··· + 4y
2
+ 1
c
8
(y
10
+ 13y
9
+ ··· + 366y + 113)
2
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.758707 + 0.684264I
a = 0.246862 + 0.784018I
b = 1.17763 1.06321I
0.28461 4.56548I 2.10704 + 11.49589I
u = 0.758707 0.684264I
a = 0.246862 0.784018I
b = 1.17763 + 1.06321I
0.28461 + 4.56548I 2.10704 11.49589I
u = 0.778657 + 0.810317I
a = 0.307274 + 1.000250I
b = 0.998713 0.817006I
2.05119 4.76907I 4.19559 + 4.84396I
u = 0.778657 0.810317I
a = 0.307274 1.000250I
b = 0.998713 + 0.817006I
2.05119 + 4.76907I 4.19559 4.84396I
u = 0.769326 + 0.148206I
a = 2.31458 0.52403I
b = 0.135374 + 0.516023I
3.05353 9.22667I 1.88985 + 9.76468I
u = 0.769326 0.148206I
a = 2.31458 + 0.52403I
b = 0.135374 0.516023I
3.05353 + 9.22667I 1.88985 9.76468I
u = 0.247229 + 0.712054I
a = 0.21326 + 2.75893I
b = 0.237383 1.305290I
5.18058 1.49359 + 0.I
u = 0.247229 0.712054I
a = 0.21326 2.75893I
b = 0.237383 + 1.305290I
5.18058 1.49359 + 0.I
u = 0.083868 + 0.715519I
a = 1.48133 0.32850I
b = 0.956611 0.035277I
2.05119 4.76907I 4.19559 + 4.84396I
u = 0.083868 0.715519I
a = 1.48133 + 0.32850I
b = 0.956611 + 0.035277I
2.05119 + 4.76907I 4.19559 4.84396I
23
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.021497 + 0.702286I
a = 0.864949 0.348697I
b = 1.123760 + 0.563516I
4.88933 + 3.47667I 0.85068 + 1.18559I
u = 0.021497 0.702286I
a = 0.864949 + 0.348697I
b = 1.123760 0.563516I
4.88933 3.47667I 0.85068 1.18559I
u = 0.95246 + 1.17976I
a = 0.041992 0.822669I
b = 0.329737 + 0.669923I
4.88933 + 3.47667I 0.85068 + 1.18559I
u = 0.95246 1.17976I
a = 0.041992 + 0.822669I
b = 0.329737 0.669923I
4.88933 3.47667I 0.85068 1.18559I
u = 0.82142 + 1.38988I
a = 0.282590 + 0.950801I
b = 1.22306 0.83679I
3.05353 + 9.22667I 1.88985 9.76468I
u = 0.82142 1.38988I
a = 0.282590 0.950801I
b = 1.22306 + 0.83679I
3.05353 9.22667I 1.88985 + 9.76468I
u = 0.344777 + 0.171189I
a = 1.223240 0.528177I
b = 0.56200 + 1.50084I
0.28461 + 4.56548I 2.10704 11.49589I
u = 0.344777 0.171189I
a = 1.223240 + 0.528177I
b = 0.56200 1.50084I
0.28461 4.56548I 2.10704 + 11.49589I
u = 0.12157 + 3.08967I
a = 0.1128000 0.0220229I
b = 0.133334 + 0.294644I
0.0546371 0
u = 0.12157 3.08967I
a = 0.1128000 + 0.0220229I
b = 0.133334 0.294644I
0.0546371 0
24
IV. I
u
4
= hu
3
+ u
2
+ b u 1, u
3
u
2
+ a + 2u + 1, u
4
+ u
3
u
2
u 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
6
=
u
3
+ u
2
2u 1
u
3
u
2
+ u + 1
a
10
=
1
u
2
a
7
=
u
3
2u
u
2
a
1
=
2u
3
u
2
+ 3u + 1
u
3
+ u
2
u 1
a
5
=
u
u
3
u
2
+ u + 1
a
3
=
u
3
0
a
4
=
u
3
+ u 1
u
a
8
=
1
0
a
11
=
u
3
+ 2u
u
3
+ u
2
u 1
a
11
=
u
3
+ 2u
u
3
+ u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
3u
2
8u 4
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
4
+ u
3
2u
2
2u + 1
c
2
u
4
3u
3
+ u
2
+ u + 1
c
3
u
4
+ 3u
3
+ u
2
u + 1
c
4
, c
10
u
4
u
3
2u
2
+ 2u + 1
c
5
u
4
+ u
3
+ u
2
u 1
c
7
u
4
u
3
u
2
+ u 1
c
8
u
4
c
9
u
4
+ u
3
u
2
u 1
c
11
u
4
u
3
+ u
2
+ u 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
10
y
4
5y
3
+ 10y
2
8y + 1
c
2
, c
3
y
4
7y
3
+ 9y
2
+ y + 1
c
5
, c
11
y
4
+ y
3
+ y
2
3y + 1
c
7
, c
9
y
4
3y
3
+ y
2
+ y + 1
c
8
y
4
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.17872
a = 0.330349
b = 0.848375
3.68806 12.6850
u = 0.332924 + 0.670769I
a = 0.26077 1.86693I
b = 0.593691 + 1.196160I
5.36351 + 2.52742I 0.91810 4.26254I
u = 0.332924 0.670769I
a = 0.26077 + 1.86693I
b = 0.593691 1.196160I
5.36351 2.52742I 0.91810 + 4.26254I
u = 1.51288
a = 0.851884
b = 0.660993
0.459232 9.15140
28
V. I
u
5
= hb + u, a u 1, u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
6
=
u + 1
u
a
10
=
1
u 1
a
7
=
u + 1
u
a
1
=
u + 1
0
a
5
=
1
u
a
3
=
u
1
a
4
=
0
1
a
8
=
u + 1
1
a
11
=
1
u 1
a
11
=
1
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
8
(u 1)
2
c
2
, c
3
, c
5
c
7
, c
9
, c
11
u
2
u + 1
c
6
, c
10
u
2
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
(y 1)
2
c
2
, c
3
, c
5
c
7
, c
9
, c
11
y
2
+ y + 1
c
6
, c
10
y
2
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
3.28987 6.00000
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
3.28987 6.00000
32
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
4
+ u
3
2u
2
2u + 1)(u
20
u
19
+ ··· + 5u + 1)
· (u
24
+ 5u
23
+ ··· + 8u + 1)(u
90
4u
89
+ ··· 679u 263)
c
2
(u
2
u + 1)(u
4
3u
3
+ u
2
+ u + 1)(u
20
3u
19
+ ··· + 2u + 1)
· (u
24
+ 3u
23
+ ··· + 3u + 1)(u
90
u
89
+ ··· 675u + 103)
c
3
(u
2
u + 1)(u
4
+ 3u
3
+ u
2
u + 1)(u
20
+ 3u
19
+ ··· 2u + 1)
· (u
24
+ 3u
23
+ ··· + 3u + 1)(u
90
u
89
+ ··· 675u + 103)
c
4
((u 1)
2
)(u
4
u
3
2u
2
+ 2u + 1)(u
20
+ u
19
+ ··· 5u + 1)
· (u
24
+ 5u
23
+ ··· + 8u + 1)(u
90
4u
89
+ ··· 679u 263)
c
5
(u
2
u + 1)(u
4
+ u
3
+ u
2
u 1)(u
20
+ u
18
+ ··· u + 1)
· (u
24
+ u
23
+ ··· + 7u + 1)(u
90
8u
88
+ ··· 22u 1)
c
6
u
2
(u
4
+ u
3
2u
2
2u + 1)
· (u
10
3u
8
+ 2u
7
8u
5
+ 9u
4
+ 9u
3
5u
2
4u 2)
2
· (u
24
2u
23
+ ··· 106u + 36)(u
45
20u
43
+ ··· + 189u + 108)
2
c
7
(u
2
u + 1)(u
4
u
3
u
2
+ u 1)(u
20
+ 12u
18
+ ··· 2u + 1)
· (u
24
5u
23
+ ··· 5u + 1)(u
90
+ 13u
88
+ ··· + 2331u 697)
c
8
u
4
(u 1)
2
(u
20
+ 13u
18
+ ··· + 366u
2
+ 113)
· (u
24
u
23
+ ··· + 320u + 64)(u
45
2u
44
+ ··· 45u 9)
2
c
9
(u
2
u + 1)(u
4
+ u
3
u
2
u 1)(u
20
+ 12u
18
+ ··· + 2u + 1)
· (u
24
5u
23
+ ··· 5u + 1)(u
90
+ 13u
88
+ ··· + 2331u 697)
c
10
u
2
(u
4
u
3
2u
2
+ 2u + 1)
· (u
10
3u
8
2u
7
+ 8u
5
+ 9u
4
9u
3
5u
2
+ 4u 2)
2
· (u
24
2u
23
+ ··· 106u + 36)(u
45
20u
43
+ ··· + 189u + 108)
2
c
11
(u
2
u + 1)(u
4
u
3
+ u
2
+ u 1)(u
20
+ u
18
+ ··· + u + 1)
· (u
24
+ u
23
+ ··· + 7u + 1)(u
90
8u
88
+ ··· 22u 1)
33
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
2
)(y
4
5y
3
+ ··· 8y + 1)(y
20
13y
19
+ ··· + 11y + 1)
· (y
24
7y
23
+ ··· 6y + 1)(y
90
20y
89
+ ··· 4190907y + 69169)
c
2
, c
3
(y
2
+ y + 1)(y
4
7y
3
+ 9y
2
+ y + 1)(y
20
5y
19
+ ··· 6y + 1)
· (y
24
+ 3y
23
+ ··· + 27y + 1)(y
90
7y
89
+ ··· + 296069y + 10609)
c
5
, c
11
(y
2
+ y + 1)(y
4
+ y
3
+ y
2
3y + 1)(y
20
+ 2y
19
+ ··· + 19y + 1)
· (y
24
+ 7y
23
+ ··· 29y + 1)(y
90
16y
89
+ ··· 90y + 1)
c
6
, c
10
y
2
(y
4
5y
3
+ ··· 8y + 1)(y
10
6y
9
+ ··· + 4y + 4)
2
· (y
24
12y
23
+ ··· + 9860y + 1296)
· (y
45
40y
44
+ ··· 36207y 11664)
2
c
7
, c
9
(y
2
+ y + 1)(y
4
3y
3
+ y
2
+ y + 1)(y
20
+ 24y
19
+ ··· + 4y
2
+ 1)
· (y
24
21y
23
+ ··· 5y + 1)
· (y
90
+ 26y
89
+ ··· + 21978055y + 485809)
c
8
y
4
(y 1)
2
(y
10
+ 13y
9
+ ··· + 366y + 113)
2
· (y
24
23y
23
+ ··· + 30720y + 4096)
· (y
45
+ 20y
44
+ ··· + 2871y 81)
2
34