11a
356
(K11a
356
)
A knot diagram
1
Linearized knot diagam
7 9 8 1 11 10 2 3 4 5 6
Solving Sequence
2,9
3 8 4 10 7 1 5 6 11
c
2
c
8
c
3
c
9
c
7
c
1
c
4
c
6
c
11
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
39
u
38
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
39
u
38
+ · · · 2u 1i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
8
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
7
=
u
3
+ 2u
u
3
+ u
a
1
=
u
6
3u
4
2u
2
+ 1
u
6
2u
4
u
2
a
5
=
u
16
7u
14
19u
12
22u
10
3u
8
+ 14u
6
+ 6u
4
2u
2
+ 1
u
16
6u
14
14u
12
14u
10
2u
8
+ 6u
6
+ 4u
4
+ 2u
2
a
6
=
u
15
6u
13
14u
11
14u
9
2u
7
+ 6u
5
+ 4u
3
+ 2u
u
17
7u
15
19u
13
22u
11
3u
9
+ 14u
7
+ 6u
5
2u
3
+ u
a
11
=
u
38
+ 15u
36
+ ··· 4u
2
+ 1
u
38
u
37
+ ··· + 3u + 1
a
11
=
u
38
+ 15u
36
+ ··· 4u
2
+ 1
u
38
u
37
+ ··· + 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
37
+ 4u
36
60u
35
+ 56u
34
408u
33
+ 352u
32
1632u
31
+ 1284u
30
4136u
29
+
2900u
28
6488u
27
+ 3844u
26
4940u
25
+ 1868u
24
+ 2188u
23
2704u
22
+ 9160u
21
5360u
20
+7744u
19
2920u
18
468u
17
+1192u
16
5148u
15
+2160u
14
2700u
13
+768u
12
+
540u
11
24u
10
+ 756u
9
96u
8
+ 112u
7
140u
6
+ 12u
5
68u
4
+ 16u
3
4u
2
+ 4u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
u
39
+ u
38
+ ··· 26u 5
c
2
, c
3
, c
8
u
39
u
38
+ ··· 2u 1
c
4
, c
6
u
39
+ 3u
38
+ ··· 4u 1
c
5
, c
10
, c
11
u
39
u
38
+ ··· 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
y
39
37y
38
+ ··· + 276y 25
c
2
, c
3
, c
8
y
39
+ 31y
38
+ ··· + 12y 1
c
4
, c
6
y
39
+ 19y
38
+ ··· + 12y 1
c
5
, c
10
, c
11
y
39
33y
38
+ ··· + 12y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.184373 + 1.113280I
1.87456 2.88869I 14.2614 + 3.8496I
u = 0.184373 1.113280I
1.87456 + 2.88869I 14.2614 3.8496I
u = 0.870700
12.5889 20.2660
u = 0.859957 + 0.065950I
8.34775 7.83020I 17.2097 + 5.1907I
u = 0.859957 0.065950I
8.34775 + 7.83020I 17.2097 5.1907I
u = 0.840218 + 0.059790I
3.40399 + 3.95494I 12.75445 3.98902I
u = 0.840218 0.059790I
3.40399 3.95494I 12.75445 + 3.98902I
u = 0.814161 + 0.022766I
5.70205 0.09754I 16.2351 0.6362I
u = 0.814161 0.022766I
5.70205 + 0.09754I 16.2351 + 0.6362I
u = 0.062866 + 1.207990I
2.96167 + 1.25323I 8.48961 5.22711I
u = 0.062866 1.207990I
2.96167 1.25323I 8.48961 + 5.22711I
u = 0.383266 + 1.213820I
0.146925 + 0.444639I 9.41731 + 0.59689I
u = 0.383266 1.213820I
0.146925 0.444639I 9.41731 0.59689I
u = 0.407915 + 1.208990I
4.82928 + 3.28352I 14.1252 1.7536I
u = 0.407915 1.208990I
4.82928 3.28352I 14.1252 + 1.7536I
u = 0.366310 + 1.256220I
1.87897 4.14984I 12.49254 + 4.42068I
u = 0.366310 1.256220I
1.87897 + 4.14984I 12.49254 4.42068I
u = 0.407478 + 1.273380I
8.63550 + 4.57833I 16.5882 3.2538I
u = 0.407478 1.273380I
8.63550 4.57833I 16.5882 + 3.2538I
u = 0.362109 + 1.293340I
1.59442 4.32741I 11.59101 + 2.45124I
u = 0.362109 1.293340I
1.59442 + 4.32741I 11.59101 2.45124I
u = 0.091582 + 1.340430I
3.95422 0.66385I 6.81341 + 0.I
u = 0.091582 1.340430I
3.95422 + 0.66385I 6.81341 + 0.I
u = 0.126262 + 1.340800I
7.43974 3.24701I 3.23245 + 3.90104I
u = 0.126262 1.340800I
7.43974 + 3.24701I 3.23245 3.90104I
u = 0.153420 + 1.344440I
3.18314 + 7.20185I 8.30980 6.60092I
u = 0.153420 1.344440I
3.18314 7.20185I 8.30980 + 6.60092I
u = 0.378228 + 1.313410I
0.88961 + 8.33524I 8.46162 6.44444I
u = 0.378228 1.313410I
0.88961 8.33524I 8.46162 + 6.44444I
u = 0.389378 + 1.319710I
4.01328 12.31500I 12.9972 + 7.6973I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.389378 1.319710I
4.01328 + 12.31500I 12.9972 7.6973I
u = 0.492543 + 0.335168I
2.04249 + 4.99221I 14.0623 7.3168I
u = 0.492543 0.335168I
2.04249 4.99221I 14.0623 + 7.3168I
u = 0.582761
5.05980 19.3550
u = 0.317690 + 0.458841I
1.46078 1.97639I 11.86139 0.45941I
u = 0.317690 0.458841I
1.46078 + 1.97639I 11.86139 + 0.45941I
u = 0.409039 + 0.362185I
2.19576 1.42469I 7.96461 + 5.04290I
u = 0.409039 0.362185I
2.19576 + 1.42469I 7.96461 5.04290I
u = 0.296485
0.479709 20.6440
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
u
39
+ u
38
+ ··· 26u 5
c
2
, c
3
, c
8
u
39
u
38
+ ··· 2u 1
c
4
, c
6
u
39
+ 3u
38
+ ··· 4u 1
c
5
, c
10
, c
11
u
39
u
38
+ ··· 2u 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
y
39
37y
38
+ ··· + 276y 25
c
2
, c
3
, c
8
y
39
+ 31y
38
+ ··· + 12y 1
c
4
, c
6
y
39
+ 19y
38
+ ··· + 12y 1
c
5
, c
10
, c
11
y
39
33y
38
+ ··· + 12y 1
8