11a
358
(K11a
358
)
A knot diagram
1
Linearized knot diagam
7 8 9 1 11 10 2 3 4 6 5
Solving Sequence
3,8
9 4 10 2 7 1 5 6 11
c
8
c
3
c
9
c
2
c
7
c
1
c
4
c
6
c
11
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
15
u
14
10u
13
+ 9u
12
+ 38u
11
30u
10
68u
9
+ 47u
8
+ 56u
7
38u
6
14u
5
+ 16u
4
2u
3
4u
2
2u + 1i
* 1 irreducible components of dim
C
= 0, with total 15 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
15
u
14
10u
13
+ 9u
12
+ 38u
11
30u
10
68u
9
+ 47u
8
+ 56u
7
38u
6
14u
5
+ 16u
4
2u
3
4u
2
2u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
u
a
7
=
u
2
+ 1
u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
5
=
u
9
6u
7
+ 11u
5
6u
3
u
u
9
5u
7
+ 7u
5
4u
3
+ u
a
6
=
u
8
5u
6
+ 7u
4
4u
2
+ 1
u
10
6u
8
+ 11u
6
6u
4
u
2
a
11
=
u
14
+ 9u
12
30u
10
+ 47u
8
38u
6
+ 16u
4
4u
2
+ 1
u
14
u
13
+ ··· u + 1
a
11
=
u
14
+ 9u
12
30u
10
+ 47u
8
38u
6
+ 16u
4
4u
2
+ 1
u
14
u
13
+ ··· u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
12
+ 36u
10
116u
8
+ 160u
6
4u
5
88u
4
+ 16u
3
+ 12u
2
12u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
15
+ u
14
+ ··· 2u 1
c
4
, c
5
, c
6
c
10
, c
11
u
15
+ u
14
+ ··· 4u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
y
15
21y
14
+ ··· + 12y 1
c
4
, c
5
, c
6
c
10
, c
11
y
15
+ 19y
14
+ ··· + 12y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.099470 + 0.155167I
2.65857 3.05774I 13.13888 + 4.89846I
u = 1.099470 0.155167I
2.65857 + 3.05774I 13.13888 4.89846I
u = 1.11956
5.10471 18.5740
u = 1.107010 + 0.284981I
5.92954 + 4.61437I 11.26027 3.61452I
u = 1.107010 0.284981I
5.92954 4.61437I 11.26027 + 3.61452I
u = 0.352585 + 0.544994I
10.51140 1.78822I 6.95572 + 3.41628I
u = 0.352585 0.544994I
10.51140 + 1.78822I 6.95572 3.41628I
u = 0.321613 + 0.380072I
1.82113 + 1.28999I 7.07135 5.74970I
u = 0.321613 0.380072I
1.82113 1.28999I 7.07135 + 5.74970I
u = 0.316745
0.476358 20.8370
u = 1.75383 + 0.07111I
4.34377 6.10280I 12.08614 + 2.62288I
u = 1.75383 0.07111I
4.34377 + 6.10280I 12.08614 2.62288I
u = 1.75676 + 0.03538I
13.01080 + 3.83507I 13.8855 3.7296I
u = 1.75676 0.03538I
13.01080 3.83507I 13.8855 + 3.7296I
u = 1.76180
15.5909 17.7930
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
15
+ u
14
+ ··· 2u 1
c
4
, c
5
, c
6
c
10
, c
11
u
15
+ u
14
+ ··· 4u 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
y
15
21y
14
+ ··· + 12y 1
c
4
, c
5
, c
6
c
10
, c
11
y
15
+ 19y
14
+ ··· + 12y 1
7