11a
359
(K11a
359
)
A knot diagram
1
Linearized knot diagam
7 9 8 1 11 10 2 3 4 6 5
Solving Sequence
2,9
3 8 4 10 7 1 5 6 11
c
2
c
8
c
3
c
9
c
7
c
1
c
4
c
6
c
11
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
26
u
25
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 26 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
26
u
25
+ · · · u 1i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
8
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
7
=
u
3
+ 2u
u
3
+ u
a
1
=
u
6
3u
4
2u
2
+ 1
u
6
2u
4
u
2
a
5
=
u
16
7u
14
19u
12
22u
10
3u
8
+ 14u
6
+ 6u
4
2u
2
+ 1
u
16
6u
14
14u
12
14u
10
2u
8
+ 6u
6
+ 4u
4
+ 2u
2
a
6
=
u
15
6u
13
14u
11
14u
9
2u
7
+ 6u
5
+ 4u
3
+ 2u
u
17
7u
15
19u
13
22u
11
3u
9
+ 14u
7
+ 6u
5
2u
3
+ u
a
11
=
u
25
10u
23
+ ··· 8u
3
u
u
25
+ u
24
+ ··· u 1
a
11
=
u
25
10u
23
+ ··· 8u
3
u
u
25
+ u
24
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
24
+ 4u
23
40u
22
+ 36u
21
172u
20
+ 136u
19
396u
18
+
264u
17
472u
16
+ 236u
15
136u
14
20u
13
+ 344u
12
220u
11
+ 384u
10
140u
9
+
48u
8
108u
6
+ 16u
5
40u
4
+ 16u
3
8u
2
+ 16u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
u
26
+ u
25
+ ··· 9u 5
c
2
, c
3
, c
8
u
26
u
25
+ ··· u 1
c
4
, c
5
, c
6
c
10
, c
11
u
26
+ u
25
+ ··· 3u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
y
26
23y
25
+ ··· 151y + 25
c
2
, c
3
, c
8
y
26
+ 21y
25
+ ··· 11y + 1
c
4
, c
5
, c
6
c
10
, c
11
y
26
+ 33y
25
+ ··· 11y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.841791 + 0.094185I
5.20604 5.29901I 9.93823 + 3.19957I
u = 0.841791 0.094185I
5.20604 + 5.29901I 9.93823 3.19957I
u = 0.828402 + 0.050333I
3.49265 + 3.42603I 11.85459 4.34345I
u = 0.828402 0.050333I
3.49265 3.42603I 11.85459 + 4.34345I
u = 0.829469
6.03489 16.5470
u = 0.063117 + 1.217600I
3.01166 + 1.26256I 8.17654 5.12241I
u = 0.063117 1.217600I
3.01166 1.26256I 8.17654 + 5.12241I
u = 0.392131 + 1.168430I
8.49921 + 0.85694I 6.81756 + 0.45709I
u = 0.392131 1.168430I
8.49921 0.85694I 6.81756 0.45709I
u = 0.370693 + 1.223000I
0.117817 + 0.889406I 8.45807 + 0.89318I
u = 0.370693 1.223000I
0.117817 0.889406I 8.45807 0.89318I
u = 0.373903 + 1.269520I
2.09387 4.32460I 12.48733 + 3.68089I
u = 0.373903 1.269520I
2.09387 + 4.32460I 12.48733 3.68089I
u = 0.116826 + 1.320420I
6.90824 2.96972I 1.89605 + 4.34441I
u = 0.116826 1.320420I
6.90824 + 2.96972I 1.89605 4.34441I
u = 0.475175 + 0.446398I
10.68300 + 1.72593I 6.44509 3.70709I
u = 0.475175 0.446398I
10.68300 1.72593I 6.44509 + 3.70709I
u = 0.371528 + 1.305530I
0.74252 + 7.74244I 7.42357 6.92511I
u = 0.371528 1.305530I
0.74252 7.74244I 7.42357 + 6.92511I
u = 0.127500 + 1.375760I
16.3951 + 3.6931I 1.57713 3.06120I
u = 0.127500 1.375760I
16.3951 3.6931I 1.57713 + 3.06120I
u = 0.374153 + 1.333360I
9.68283 9.67188I 5.67938 + 5.45420I
u = 0.374153 1.333360I
9.68283 + 9.67188I 5.67938 5.45420I
u = 0.373827 + 0.329514I
1.88313 1.28751I 6.75058 + 5.74185I
u = 0.373827 0.329514I
1.88313 + 1.28751I 6.75058 5.74185I
u = 0.301902
0.485500 20.4450
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
u
26
+ u
25
+ ··· 9u 5
c
2
, c
3
, c
8
u
26
u
25
+ ··· u 1
c
4
, c
5
, c
6
c
10
, c
11
u
26
+ u
25
+ ··· 3u 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
y
26
23y
25
+ ··· 151y + 25
c
2
, c
3
, c
8
y
26
+ 21y
25
+ ··· 11y + 1
c
4
, c
5
, c
6
c
10
, c
11
y
26
+ 33y
25
+ ··· 11y + 1
7