11a
360
(K11a
360
)
A knot diagram
1
Linearized knot diagam
9 8 7 1 11 10 2 3 4 6 5
Solving Sequence
5,11
6 1 4 10 7 3 9 2 8
c
5
c
11
c
4
c
10
c
6
c
3
c
9
c
1
c
8
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
28
u
27
+ ··· + 4u 1i
* 1 irreducible components of dim
C
= 0, with total 28 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
28
u
27
+ · · · + 4u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
1
=
u
u
a
4
=
u
2
+ 1
u
2
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
8
5u
6
7u
4
2u
2
+ 1
u
10
6u
8
11u
6
6u
4
u
2
a
9
=
u
7
+ 4u
5
+ 4u
3
+ 2u
u
7
3u
5
+ u
a
2
=
u
13
8u
11
23u
9
30u
7
20u
5
6u
3
u
u
13
+ 7u
11
+ 15u
9
+ 8u
7
4u
5
3u
3
+ u
a
8
=
u
25
16u
23
+ ··· + 2u
3
+ 3u
u
27
17u
25
+ ··· u
3
+ u
a
8
=
u
25
16u
23
+ ··· + 2u
3
+ 3u
u
27
17u
25
+ ··· u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
27
+ 4u
26
76u
25
+ 72u
24
628u
23
+ 556u
22
2956u
21
+ 2404u
20
8720u
19
+
6372u
18
16704u
17
+ 10652u
16
20788u
15
+ 11088u
14
16232u
13
+ 6688u
12
7212u
11
+
1772u
10
1372u
9
168u
8
32u
7
140u
6
68u
5
+ 8u
4
20u
3
16u
2
+ 16u 22
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
28
+ 3u
27
+ ··· + 29u + 8
c
2
, c
7
, c
8
u
28
u
27
+ ··· 2u 1
c
4
, c
5
, c
6
c
10
, c
11
u
28
+ u
27
+ ··· 4u 1
c
9
u
28
+ u
27
+ ··· 100u 61
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
28
+ 21y
27
+ ··· 793y + 64
c
2
, c
7
, c
8
y
28
23y
27
+ ··· 10y + 1
c
4
, c
5
, c
6
c
10
, c
11
y
28
+ 37y
27
+ ··· 10y + 1
c
9
y
28
+ 13y
27
+ ··· 3534y + 3721
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.304139 + 1.027830I
2.34823 8.20316I 7.50942 + 6.87147I
u = 0.304139 1.027830I
2.34823 + 8.20316I 7.50942 6.87147I
u = 0.265481 + 1.044260I
6.76083 + 4.04685I 2.74550 4.44082I
u = 0.265481 1.044260I
6.76083 4.04685I 2.74550 + 4.44082I
u = 0.208386 + 1.064510I
3.42392 + 0.10107I 5.90157 + 0.38033I
u = 0.208386 1.064510I
3.42392 0.10107I 5.90157 0.38033I
u = 0.100569 + 0.877295I
2.08521 1.33119I 6.23078 + 5.40479I
u = 0.100569 0.877295I
2.08521 + 1.33119I 6.23078 5.40479I
u = 0.265641 + 0.799341I
3.12024 + 2.65179I 11.98850 4.74580I
u = 0.265641 0.799341I
3.12024 2.65179I 11.98850 + 4.74580I
u = 0.526451 + 0.252550I
1.61862 5.37366I 12.50162 + 6.60941I
u = 0.526451 0.252550I
1.61862 + 5.37366I 12.50162 6.60941I
u = 0.430028 + 0.394667I
1.11578 + 2.20453I 10.78929 + 0.67162I
u = 0.430028 0.394667I
1.11578 2.20453I 10.78929 0.67162I
u = 0.473056 + 0.300840I
2.59067 + 1.52781I 7.09485 4.38679I
u = 0.473056 0.300840I
2.59067 1.52781I 7.09485 + 4.38679I
u = 0.499593
5.51225 18.3880
u = 0.04326 + 1.66904I
5.56370 + 3.66754I 10.51538 + 0.I
u = 0.04326 1.66904I
5.56370 3.66754I 10.51538 + 0.I
u = 0.01768 + 1.69715I
11.29630 1.73601I 5.59144 + 0.I
u = 0.01768 1.69715I
11.29630 + 1.73601I 5.59144 + 0.I
u = 0.290753
0.512208 19.3960
u = 0.07952 + 1.72739I
12.1446 9.7685I 0
u = 0.07952 1.72739I
12.1446 + 9.7685I 0
u = 0.06882 + 1.73175I
16.6638 + 5.4189I 0
u = 0.06882 1.73175I
16.6638 5.4189I 0
u = 0.05390 + 1.73452I
13.43200 0.98282I 0
u = 0.05390 1.73452I
13.43200 + 0.98282I 0
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
u
28
+ 3u
27
+ ··· + 29u + 8
c
2
, c
7
, c
8
u
28
u
27
+ ··· 2u 1
c
4
, c
5
, c
6
c
10
, c
11
u
28
+ u
27
+ ··· 4u 1
c
9
u
28
+ u
27
+ ··· 100u 61
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
28
+ 21y
27
+ ··· 793y + 64
c
2
, c
7
, c
8
y
28
23y
27
+ ··· 10y + 1
c
4
, c
5
, c
6
c
10
, c
11
y
28
+ 37y
27
+ ··· 10y + 1
c
9
y
28
+ 13y
27
+ ··· 3534y + 3721
7