11a
361
(K11a
361
)
A knot diagram
1
Linearized knot diagam
8 7 9 1 11 10 2 4 3 5 6
Solving Sequence
5,10
11 6 7
1,3
2 4 9 8
c
10
c
5
c
6
c
11
c
2
c
4
c
9
c
8
c
1
, c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
17
+ 2u
16
+ ··· + b 1, 5u
17
+ 9u
16
+ ··· + 2a 7, u
18
3u
17
+ ··· 7u 2i
I
u
2
= hu
10
a u
10
+ ··· + 2a 1, 2u
10
a u
10
+ ··· + a 3,
u
11
+ u
10
4u
9
3u
8
+ 6u
7
+ 2u
6
2u
5
+ 3u
4
3u
3
3u
2
+ 2u 1i
I
u
3
= hu
5
2u
3
+ b + u, u
5
+ 3u
3
u
2
+ a 2u + 1, u
6
3u
4
+ 2u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 46 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
17
+2u
16
+· · ·+b 1, 5u
17
+9u
16
+· · ·+2a 7, u
18
3u
17
+· · ·7u 2i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
7
=
u
3
2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
5
2
u
17
9
2
u
16
+ ··· + 16u +
7
2
u
17
2u
16
+ ··· + 6u + 1
a
2
=
3
2
u
17
5
2
u
16
+ ··· + 9u +
3
2
u
17
2u
16
+ ··· + 5u + 1
a
4
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
9
=
1
2
u
17
1
2
u
16
+ ··· + 3u +
3
2
u
17
+ u
16
+ ··· 4u 1
a
8
=
1
2
u
17
1
2
u
16
+ ··· + 4u +
3
2
2u
17
+ 3u
16
+ ··· 12u 3
a
8
=
1
2
u
17
1
2
u
16
+ ··· + 4u +
3
2
2u
17
+ 3u
16
+ ··· 12u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
17
+ 4u
16
+ 26u
15
16u
14
76u
13
+ 10u
12
+ 112u
11
+
58u
10
50u
9
126u
8
88u
7
+ 58u
6
+ 122u
5
+ 70u
4
12u
3
50u
2
46u 30
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
18
+ 12u
16
+ ··· 3u 1
c
4
, c
6
u
18
+ 9u
17
+ ··· + 223u + 26
c
5
, c
10
, c
11
u
18
3u
17
+ ··· 7u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
y
18
+ 24y
17
+ ··· 5y + 1
c
4
, c
6
y
18
+ 13y
17
+ ··· 7609y + 676
c
5
, c
10
, c
11
y
18
15y
17
+ ··· 41y + 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.123856 + 0.896133I
a = 0.64726 2.44716I
b = 0.30161 + 1.61404I
16.3220 + 7.5688I 2.56060 3.84684I
u = 0.123856 0.896133I
a = 0.64726 + 2.44716I
b = 0.30161 1.61404I
16.3220 7.5688I 2.56060 + 3.84684I
u = 0.538460 + 0.620351I
a = 1.03715 + 1.21621I
b = 0.05142 1.55107I
10.10640 + 2.19718I 4.14124 3.09555I
u = 0.538460 0.620351I
a = 1.03715 1.21621I
b = 0.05142 + 1.55107I
10.10640 2.19718I 4.14124 + 3.09555I
u = 1.151600 + 0.470809I
a = 0.509790 1.091590I
b = 0.24523 + 1.63308I
13.17120 2.70335I 5.20794 + 0.16548I
u = 1.151600 0.470809I
a = 0.509790 + 1.091590I
b = 0.24523 1.63308I
13.17120 + 2.70335I 5.20794 0.16548I
u = 1.261310 + 0.252068I
a = 0.211990 + 0.318908I
b = 0.236066 0.509153I
1.47242 + 2.06370I 11.90510 + 0.97448I
u = 1.261310 0.252068I
a = 0.211990 0.318908I
b = 0.236066 + 0.509153I
1.47242 2.06370I 11.90510 0.97448I
u = 0.031986 + 0.701532I
a = 0.175359 + 1.101380I
b = 0.386143 0.454390I
2.29851 + 1.35610I 7.33537 5.27531I
u = 0.031986 0.701532I
a = 0.175359 1.101380I
b = 0.386143 + 0.454390I
2.29851 1.35610I 7.33537 + 5.27531I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.30632
a = 0.919432
b = 0.613328
5.28445 18.9030
u = 1.286650 + 0.297323I
a = 0.675519 + 0.845692I
b = 0.521429 0.448538I
1.81273 4.98441I 12.9081 + 7.6610I
u = 1.286650 0.297323I
a = 0.675519 0.845692I
b = 0.521429 + 0.448538I
1.81273 + 4.98441I 12.9081 7.6610I
u = 1.36136 + 0.40071I
a = 1.71836 1.08684I
b = 0.33798 + 1.58437I
11.6528 12.2200I 6.45692 + 6.09309I
u = 1.36136 0.40071I
a = 1.71836 + 1.08684I
b = 0.33798 1.58437I
11.6528 + 12.2200I 6.45692 6.09309I
u = 1.45252 + 0.15463I
a = 0.916883 0.366782I
b = 0.11443 1.46229I
3.61426 4.76803I 7.92624 + 3.38619I
u = 1.45252 0.15463I
a = 0.916883 + 0.366782I
b = 0.11443 + 1.46229I
3.61426 + 4.76803I 7.92624 3.38619I
u = 0.292956
a = 0.504799
b = 0.307793
0.489564 20.2140
6
II.
I
u
2
= hu
10
au
10
+· · ·+2a1, 2u
10
au
10
+· · ·+a3, u
11
+u
10
+· · ·+2u1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
7
=
u
3
2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
a
1
3
u
10
a +
1
3
u
10
+ ···
2
3
a +
1
3
a
2
=
1
3
u
10
a
2
3
u
10
+ ··· +
1
3
a
2
3
1
3
u
10
a + u
10
+ ···
1
3
a +
1
3
a
4
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
9
=
2
3
u
10
a
2
3
u
9
a + ··· +
1
3
a +
5
3
1
3
u
10
a
1
3
u
10
+ ··· +
1
3
u +
1
3
a
8
=
1
3
u
10
a +
1
3
u
10
+ ··· +
1
3
a +
4
3
1
3
u
10
a +
1
3
u
9
a + ··· +
1
3
a +
2
3
a
8
=
1
3
u
10
a +
1
3
u
10
+ ··· +
1
3
a +
4
3
1
3
u
10
a +
1
3
u
9
a + ··· +
1
3
a +
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
+ 16u
7
4u
6
20u
5
+ 12u
4
4u
3
8u
2
+ 20u 14
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
22
u
21
+ ··· + 6u + 5
c
4
, c
6
(u
11
3u
10
+ ··· 2u + 1)
2
c
5
, c
10
, c
11
(u
11
+ u
10
4u
9
3u
8
+ 6u
7
+ 2u
6
2u
5
+ 3u
4
3u
3
3u
2
+ 2u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
y
22
+ 19y
21
+ ··· + 24y + 25
c
4
, c
6
(y
11
+ 11y
10
+ ··· + 6y 1)
2
c
5
, c
10
, c
11
(y
11
9y
10
+ ··· 2y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.14725
a = 1.48144 + 0.67002I
b = 0.301144 1.127860I
1.09450 7.62370
u = 1.14725
a = 1.48144 0.67002I
b = 0.301144 + 1.127860I
1.09450 7.62370
u = 0.044199 + 0.849205I
a = 0.388928 + 0.983366I
b = 0.915282 0.626510I
8.93247 3.04152I 3.93879 + 2.82242I
u = 0.044199 + 0.849205I
a = 0.36363 2.98960I
b = 0.10178 + 1.52179I
8.93247 3.04152I 3.93879 + 2.82242I
u = 0.044199 0.849205I
a = 0.388928 0.983366I
b = 0.915282 + 0.626510I
8.93247 + 3.04152I 3.93879 2.82242I
u = 0.044199 0.849205I
a = 0.36363 + 2.98960I
b = 0.10178 1.52179I
8.93247 + 3.04152I 3.93879 2.82242I
u = 1.232090 + 0.392876I
a = 0.092298 0.230493I
b = 0.866867 0.720237I
5.26692 1.41699I 7.20869 + 0.63373I
u = 1.232090 + 0.392876I
a = 0.88708 1.64981I
b = 0.02867 + 1.51700I
5.26692 1.41699I 7.20869 + 0.63373I
u = 1.232090 0.392876I
a = 0.092298 + 0.230493I
b = 0.866867 + 0.720237I
5.26692 + 1.41699I 7.20869 0.63373I
u = 1.232090 0.392876I
a = 0.88708 + 1.64981I
b = 0.02867 1.51700I
5.26692 + 1.41699I 7.20869 0.63373I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.317220 + 0.129556I
a = 0.848428 + 0.622696I
b = 0.450568 + 0.155139I
1.89175 + 2.94672I 13.7994 4.1179I
u = 1.317220 + 0.129556I
a = 1.083920 + 0.034152I
b = 0.176110 1.143700I
1.89175 + 2.94672I 13.7994 4.1179I
u = 1.317220 0.129556I
a = 0.848428 0.622696I
b = 0.450568 0.155139I
1.89175 2.94672I 13.7994 + 4.1179I
u = 1.317220 0.129556I
a = 1.083920 0.034152I
b = 0.176110 + 1.143700I
1.89175 2.94672I 13.7994 + 4.1179I
u = 1.304640 + 0.385413I
a = 0.834463 + 0.932370I
b = 0.947680 0.541858I
4.72165 + 7.47524I 8.22908 5.55460I
u = 1.304640 + 0.385413I
a = 1.53022 1.52281I
b = 0.16441 + 1.51556I
4.72165 + 7.47524I 8.22908 5.55460I
u = 1.304640 0.385413I
a = 0.834463 0.932370I
b = 0.947680 + 0.541858I
4.72165 7.47524I 8.22908 + 5.55460I
u = 1.304640 0.385413I
a = 1.53022 + 1.52281I
b = 0.16441 1.51556I
4.72165 7.47524I 8.22908 + 5.55460I
u = 0.271947 + 0.385187I
a = 1.176750 + 0.591060I
b = 0.288931 + 0.529428I
2.98514 1.13130I 8.01220 + 6.05785I
u = 0.271947 + 0.385187I
a = 1.28240 + 1.91841I
b = 0.021293 1.196140I
2.98514 1.13130I 8.01220 + 6.05785I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.271947 0.385187I
a = 1.176750 0.591060I
b = 0.288931 0.529428I
2.98514 + 1.13130I 8.01220 6.05785I
u = 0.271947 0.385187I
a = 1.28240 1.91841I
b = 0.021293 + 1.196140I
2.98514 + 1.13130I 8.01220 6.05785I
12
III. I
u
3
= hu
5
2u
3
+ b + u, u
5
+ 3u
3
u
2
+ a 2u + 1, u
6
3u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
7
=
u
3
2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
5
3u
3
+ u
2
+ 2u 1
u
5
+ 2u
3
u
a
2
=
u
5
3u
3
+ 2u
u
5
u
4
+ 2u
3
+ 2u
2
u
a
4
=
u
5
2u
3
+ u
0
a
9
=
u
4
+ u
3
+ 2u
2
2u
1
a
8
=
u
4
+ u
3
+ 2u
2
2u 1
1
a
8
=
u
4
+ u
3
+ 2u
2
2u 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
8u
2
4
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
(u
2
+ 1)
3
c
4
, c
6
u
6
+ u
4
+ 2u
2
+ 1
c
5
, c
10
, c
11
u
6
3u
4
+ 2u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
(y + 1)
6
c
4
, c
6
(y
3
+ y
2
+ 2y + 1)
2
c
5
, c
10
, c
11
(y
3
3y
2
+ 2y + 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.307140 + 0.215080I
a = 0.082503 + 0.684841I
b = 1.000000I
0.26574 2.82812I 7.50976 + 2.97945I
u = 1.307140 0.215080I
a = 0.082503 0.684841I
b = 1.000000I
0.26574 + 2.82812I 7.50976 2.97945I
u = 1.307140 + 0.215080I
a = 1.40722 0.43972I
b = 1.000000I
0.26574 + 2.82812I 7.50976 2.97945I
u = 1.307140 0.215080I
a = 1.40722 + 0.43972I
b = 1.000000I
0.26574 2.82812I 7.50976 + 2.97945I
u = 0.569840I
a = 1.32472 + 1.75488I
b = 1.000000I
4.40332 0.980490
u = 0.569840I
a = 1.32472 1.75488I
b = 1.000000I
4.40332 0.980490
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
((u
2
+ 1)
3
)(u
18
+ 12u
16
+ ··· 3u 1)(u
22
u
21
+ ··· + 6u + 5)
c
4
, c
6
(u
6
+ u
4
+ 2u
2
+ 1)(u
11
3u
10
+ ··· 2u + 1)
2
· (u
18
+ 9u
17
+ ··· + 223u + 26)
c
5
, c
10
, c
11
(u
6
3u
4
+ 2u
2
+ 1)
· (u
11
+ u
10
4u
9
3u
8
+ 6u
7
+ 2u
6
2u
5
+ 3u
4
3u
3
3u
2
+ 2u 1)
2
· (u
18
3u
17
+ ··· 7u 2)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
((y + 1)
6
)(y
18
+ 24y
17
+ ··· 5y + 1)(y
22
+ 19y
21
+ ··· + 24y + 25)
c
4
, c
6
((y
3
+ y
2
+ 2y + 1)
2
)(y
11
+ 11y
10
+ ··· + 6y 1)
2
· (y
18
+ 13y
17
+ ··· 7609y + 676)
c
5
, c
10
, c
11
((y
3
3y
2
+ 2y + 1)
2
)(y
11
9y
10
+ ··· 2y 1)
2
· (y
18
15y
17
+ ··· 41y + 4)
18