11a
362
(K11a
362
)
A knot diagram
1
Linearized knot diagam
8 7 9 1 11 10 2 4 3 6 5
Solving Sequence
3,7
2 8
1,10
6 11 5 9 4
c
2
c
7
c
1
c
6
c
10
c
5
c
9
c
3
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
10
u
9
+ 7u
8
8u
7
+ 17u
6
20u
5
+ 14u
4
12u
3
+ 4a + 9u + 1,
u
11
+ 8u
9
u
8
+ 23u
7
5u
6
+ 26u
5
6u
4
+ 8u
3
+ u
2
+ 2u 1i
I
u
2
= h−5u
11
82u
10
+ ··· + 547b 41, 572u
11
+ 957u
10
+ ··· + 2735a + 3487,
u
12
+ u
11
+ 6u
10
+ 6u
9
+ 13u
8
+ 11u
7
+ 15u
6
+ 7u
5
+ 17u
4
+ 5u
3
+ 16u
2
+ 6u + 5i
I
u
3
= hb + u, a
2
a 1, u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
10
u
9
+ · · · + 4a + 1, u
11
+ 8u
9
+ · · · + 2u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
8
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
10
=
1
4
u
10
+
1
4
u
9
+ ···
9
4
u
1
4
u
a
6
=
1
2
u
10
4u
8
+ ··· + 2u
1
2
1
4
u
10
1
4
u
9
+ ··· +
1
4
u +
1
4
a
11
=
1
2
u
10
1
2
u
9
+ ···
5
2
u
2
u
1
4
u
10
+
1
4
u
9
+ ···
1
4
u +
1
4
a
5
=
1
4
u
10
+
1
4
u
9
+ ··· +
1
4
u +
3
4
1
4
u
10
+
1
4
u
9
+ ··· +
1
4
u
1
4
a
9
=
1
4
u
10
+
1
4
u
9
+ ···
5
4
u
1
4
u
a
4
=
1
4
u
10
+
1
4
u
9
+ ··· +
1
4
u +
3
4
u
2
a
4
=
1
4
u
10
+
1
4
u
9
+ ··· +
1
4
u +
3
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
10
2u
9
24u
8
12u
7
66u
6
25u
5
65u
4
23u
3
11u
2
14u 13
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
11
+ 8u
9
+ u
8
+ 23u
7
+ 5u
6
+ 26u
5
+ 6u
4
+ 8u
3
u
2
+ 2u + 1
c
4
, c
5
, c
6
c
10
, c
11
u
11
+ 3u
10
+ ··· + 13u + 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
y
11
+ 16y
10
+ ··· + 6y 1
c
4
, c
5
, c
6
c
10
, c
11
y
11
+ 15y
10
+ ··· + 37y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.412939 + 0.618853I
a = 1.86851 1.24582I
b = 0.412939 + 0.618853I
10.82280 1.46957I 5.57474 + 4.71346I
u = 0.412939 0.618853I
a = 1.86851 + 1.24582I
b = 0.412939 0.618853I
10.82280 + 1.46957I 5.57474 4.71346I
u = 0.360154 + 0.393035I
a = 1.25715 0.93867I
b = 0.360154 + 0.393035I
1.95559 + 1.25455I 6.26218 5.85654I
u = 0.360154 0.393035I
a = 1.25715 + 0.93867I
b = 0.360154 0.393035I
1.95559 1.25455I 6.26218 + 5.85654I
u = 0.07033 + 1.59466I
a = 0.276929 + 0.448902I
b = 0.07033 + 1.59466I
10.55850 + 2.37127I 3.60289 2.68530I
u = 0.07033 1.59466I
a = 0.276929 0.448902I
b = 0.07033 1.59466I
10.55850 2.37127I 3.60289 + 2.68530I
u = 0.22374 + 1.62996I
a = 0.756490 + 0.157129I
b = 0.22374 + 1.62996I
15.5882 6.3668I 0.98879 + 3.90232I
u = 0.22374 1.62996I
a = 0.756490 0.157129I
b = 0.22374 1.62996I
15.5882 + 6.3668I 0.98879 3.90232I
u = 0.314433
a = 0.886718
b = 0.314433
0.496230 19.9870
u = 0.36341 + 1.67319I
a = 1.034280 0.155633I
b = 0.36341 + 1.67319I
13.1804 + 8.7652I 0.57808 3.37097I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.36341 1.67319I
a = 1.034280 + 0.155633I
b = 0.36341 1.67319I
13.1804 8.7652I 0.57808 + 3.37097I
6
II. I
u
2
= h−5u
11
82u
10
+ · · · + 547b 41, 572u
11
+ 957u
10
+ · · · + 2735a +
3487, u
12
+ u
11
+ · · · + 6u + 5i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
8
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
10
=
0.209141u
11
0.349909u
10
+ ··· 1.48702u 1.27495
0.00914077u
11
+ 0.149909u
10
+ ··· 1.71298u + 0.0749543
a
6
=
0.0138940u
11
0.0921389u
10
+ ··· + 0.116271u 0.646069
0.223035u
11
0.257770u
10
+ ··· 0.603291u 0.628885
a
11
=
0.0277879u
11
0.184278u
10
+ ··· 0.767459u 1.29214
0.0182815u
11
+ 0.299817u
10
+ ··· 0.425960u + 0.149909
a
5
=
0.0197441u
11
0.236197u
10
+ ··· + 0.0599634u 0.918099
0.234004u
11
0.237660u
10
+ ··· 0.747715u 1.11883
a
9
=
1
5
u
11
1
5
u
10
+ ···
16
5
u
6
5
0.00914077u
11
+ 0.149909u
10
+ ··· 1.71298u + 0.0749543
a
4
=
0.0149909u
11
0.00585009u
10
+ ··· + 0.769287u 0.802925
0.140768u
11
+ 0.0914077u
10
+ ··· 0.0201097u 0.954296
a
4
=
0.0149909u
11
0.00585009u
10
+ ··· + 0.769287u 0.802925
0.140768u
11
+ 0.0914077u
10
+ ··· 0.0201097u 0.954296
(ii) Obstruction class = 1
(iii) Cusp Shapes =
828
547
u
11
+
424
547
u
10
3252
547
u
9
+
964
547
u
8
2920
547
u
7
+
624
547
u
6
3248
547
u
5
+
4136
547
u
4
9020
547
u
3
+
7924
547
u
2
3244
547
u
882
547
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
12
u
11
+ ··· 6u + 5
c
4
, c
5
, c
6
c
10
, c
11
(u
6
u
5
+ 5u
4
4u
3
+ 6u
2
3u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
y
12
+ 11y
11
+ ··· + 124y + 25
c
4
, c
5
, c
6
c
10
, c
11
(y
6
+ 9y
5
+ 29y
4
+ 40y
3
+ 22y
2
+ 3y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.778448 + 0.629355I
a = 0.839269 + 0.810995I
b = 0.06243 1.43905I
7.93269 2.65597I 2.41885 + 3.39809I
u = 0.778448 0.629355I
a = 0.839269 0.810995I
b = 0.06243 + 1.43905I
7.93269 + 2.65597I 2.41885 3.39809I
u = 0.010658 + 1.201250I
a = 0.301274 0.265056I
b = 0.293888 0.567347I
3.03178 1.10871I 7.53615 + 6.18117I
u = 0.010658 1.201250I
a = 0.301274 + 0.265056I
b = 0.293888 + 0.567347I
3.03178 + 1.10871I 7.53615 6.18117I
u = 1.047750 + 0.669346I
a = 0.79276 + 1.18795I
b = 0.11496 1.62096I
18.6443 + 3.4272I 2.04500 2.25224I
u = 1.047750 0.669346I
a = 0.79276 1.18795I
b = 0.11496 + 1.62096I
18.6443 3.4272I 2.04500 + 2.25224I
u = 0.293888 + 0.567347I
a = 0.730525 0.188448I
b = 0.010658 1.201250I
3.03178 + 1.10871I 7.53615 6.18117I
u = 0.293888 0.567347I
a = 0.730525 + 0.188448I
b = 0.010658 + 1.201250I
3.03178 1.10871I 7.53615 + 6.18117I
u = 0.06243 + 1.43905I
a = 0.808537 0.064242I
b = 0.778448 0.629355I
7.93269 + 2.65597I 2.41885 3.39809I
u = 0.06243 1.43905I
a = 0.808537 + 0.064242I
b = 0.778448 + 0.629355I
7.93269 2.65597I 2.41885 + 3.39809I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.11496 + 1.62096I
a = 1.091280 + 0.055514I
b = 1.047750 0.669346I
18.6443 3.4272I 2.04500 + 2.25224I
u = 0.11496 1.62096I
a = 1.091280 0.055514I
b = 1.047750 + 0.669346I
18.6443 + 3.4272I 2.04500 2.25224I
11
III. I
u
3
= hb + u, a
2
a 1, u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
1
a
8
=
u
0
a
1
=
0
1
a
10
=
a
u
a
6
=
au + u
a + u
a
11
=
a 1
au a
a
5
=
au
au 1
a
9
=
a u
u
a
4
=
au
1
a
4
=
au
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
(u
2
+ 1)
2
c
4
, c
5
, c
6
c
10
, c
11
u
4
+ 3u
2
+ 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
(y + 1)
4
c
4
, c
5
, c
6
c
10
, c
11
(y
2
+ 3y + 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.618034
b = 1.000000I
4.27683 0
u = 1.000000I
a = 1.61803
b = 1.000000I
12.1725 0
u = 1.000000I
a = 0.618034
b = 1.000000I
4.27683 0
u = 1.000000I
a = 1.61803
b = 1.000000I
12.1725 0
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
((u
2
+ 1)
2
)(u
11
+ 8u
9
+ ··· + 2u + 1)
· (u
12
u
11
+ ··· 6u + 5)
c
4
, c
5
, c
6
c
10
, c
11
(u
4
+ 3u
2
+ 1)(u
6
u
5
+ 5u
4
4u
3
+ 6u
2
3u + 1)
2
· (u
11
+ 3u
10
+ ··· + 13u + 2)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
((y + 1)
4
)(y
11
+ 16y
10
+ ··· + 6y 1)(y
12
+ 11y
11
+ ··· + 124y + 25)
c
4
, c
5
, c
6
c
10
, c
11
(y
2
+ 3y + 1)
2
(y
6
+ 9y
5
+ 29y
4
+ 40y
3
+ 22y
2
+ 3y + 1)
2
· (y
11
+ 15y
10
+ ··· + 37y 4)
17