11a
363
(K11a
363
)
A knot diagram
1
Linearized knot diagam
9 8 7 1 11 10 3 2 4 6 5
Solving Sequence
5,11
6 1 4 10 7 3 9 2 8
c
5
c
11
c
4
c
10
c
6
c
3
c
9
c
1
c
8
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
5
+ 4u
3
+ 3u 1i
I
u
2
= hu
12
u
11
+ 8u
10
7u
9
+ 22u
8
15u
7
+ 23u
6
9u
5
+ 6u
4
+ 1i
* 2 irreducible components of dim
C
= 0, with total 17 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
5
+ 4u
3
+ 3u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
1
=
u
u
a
4
=
u
2
+ 1
u
2
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
3
+ u
2
u + 1
2u
3
u
2
+ 3u 1
a
9
=
u
3
+ u
2
+ 2u
u
3
u
2
2u + 1
a
2
=
u
4
u
3
2u
2
u
u
4
+ u
3
+ 2u
2
a
8
=
u
4
u
3
+ 2u
2
u + 1
u
4
+ u
3
u
2
+ u
a
8
=
u
4
u
3
+ 2u
2
u + 1
u
4
+ u
3
u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
4u
3
16u
2
12u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
10
c
11
u
5
+ 4u
3
+ 3u + 1
c
9
u
5
+ 5u
4
+ 14u
3
+ 19u
2
+ 16u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
10
c
11
y
5
+ 8y
4
+ 22y
3
+ 24y
2
+ 9y 1
c
9
y
5
+ 3y
4
+ 38y
3
+ 47y
2
+ 104y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.226624 + 1.023230I
6.17001 + 3.58174I 1.25591 4.89768I
u = 0.226624 1.023230I
6.17001 3.58174I 1.25591 + 4.89768I
u = 0.297463
0.520906 19.1220
u = 0.07789 + 1.74776I
13.3118 6.2970I 0.18315 + 2.53911I
u = 0.07789 1.74776I
13.3118 + 6.2970I 0.18315 2.53911I
5
II. I
u
2
= hu
12
u
11
+ 8u
10
7u
9
+ 22u
8
15u
7
+ 23u
6
9u
5
+ 6u
4
+ 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
1
=
u
u
a
4
=
u
2
+ 1
u
2
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
8
5u
6
7u
4
2u
2
+ 1
u
10
6u
8
11u
6
6u
4
u
2
a
9
=
u
7
+ 4u
5
+ 4u
3
+ 2u
u
7
3u
5
+ u
a
2
=
u
11
+ u
10
8u
9
+ 7u
8
22u
7
+ 14u
6
23u
5
+ 6u
4
6u
3
+ 1
u
10
7u
8
14u
6
u
5
6u
4
3u
3
1
a
8
=
u
11
u
10
+ 7u
9
7u
8
+ 16u
7
15u
6
+ 12u
5
10u
4
3u
2
u 1
u
11
6u
9
10u
7
u
6
3u
5
3u
4
u
3
u
2
2u 1
a
8
=
u
11
u
10
+ 7u
9
7u
8
+ 16u
7
15u
6
+ 12u
5
10u
4
3u
2
u 1
u
11
6u
9
10u
7
u
6
3u
5
3u
4
u
3
u
2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
4u
5
+ 16u
4
12u
3
+ 12u
2
6
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
10
c
11
u
12
+ u
11
+ 8u
10
+ 7u
9
+ 22u
8
+ 15u
7
+ 23u
6
+ 9u
5
+ 6u
4
+ 1
c
9
(u
6
2u
5
+ 5u
4
4u
3
+ 8u
2
4u + 3)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
10
c
11
y
12
+ 15y
11
+ ··· + 12y
2
+ 1
c
9
(y
6
+ 6y
5
+ 25y
4
+ 54y
3
+ 62y
2
+ 32y + 9)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.105048 + 0.895324I
2.14658 1.36304I 5.98906 + 5.15276I
u = 0.105048 0.895324I
2.14658 + 1.36304I 5.98906 5.15276I
u = 0.300612 + 1.096290I
15.9921 4.7113I 0.92821 + 3.58608I
u = 0.300612 1.096290I
15.9921 + 4.7113I 0.92821 3.58608I
u = 0.552709 + 0.348214I
11.47010 1.80634I 5.08274 + 3.33972I
u = 0.552709 0.348214I
11.47010 + 1.80634I 5.08274 3.33972I
u = 0.423428 + 0.279325I
2.14658 + 1.36304I 5.98906 5.15276I
u = 0.423428 0.279325I
2.14658 1.36304I 5.98906 + 5.15276I
u = 0.02018 + 1.70425I
11.47010 1.80634I 5.08274 + 3.33972I
u = 0.02018 1.70425I
11.47010 + 1.80634I 5.08274 3.33972I
u = 0.05512 + 1.72697I
15.9921 + 4.7113I 0.92821 3.58608I
u = 0.05512 1.72697I
15.9921 4.7113I 0.92821 + 3.58608I
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
10
c
11
(u
5
+ 4u
3
+ 3u + 1)
· (u
12
+ u
11
+ 8u
10
+ 7u
9
+ 22u
8
+ 15u
7
+ 23u
6
+ 9u
5
+ 6u
4
+ 1)
c
9
(u
5
+ 5u
4
+ 14u
3
+ 19u
2
+ 16u + 4)
· (u
6
2u
5
+ 5u
4
4u
3
+ 8u
2
4u + 3)
2
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
10
c
11
(y
5
+ 8y
4
+ 22y
3
+ 24y
2
+ 9y 1)(y
12
+ 15y
11
+ ··· + 12y
2
+ 1)
c
9
(y
5
+ 3y
4
+ 38y
3
+ 47y
2
+ 104y 16)
· (y
6
+ 6y
5
+ 25y
4
+ 54y
3
+ 62y
2
+ 32y + 9)
2
11