11n
1
(K11n
1
)
A knot diagram
1
Linearized knot diagam
5 1 9 2 3 9 11 4 1 7 10
Solving Sequence
1,5
2 3
6,9
10 4 8 11 7
c
1
c
2
c
5
c
9
c
4
c
8
c
11
c
7
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2u
18
+ 7u
17
+ ··· + 4b + 5, 5u
18
18u
17
+ ··· + 4a 5, u
19
4u
18
+ ··· 12u
2
+ 1i
I
u
2
= h−au + b, a
3
+ a
2
u + a
2
+ 2au 1, u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 25 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−2u
18
+7u
17
+· · ·+4b+5, 5u
18
18u
17
+· · ·+4a5, u
19
4u
18
+· · ·12u
2
+1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
5
2u
3
u
u
5
+ u
3
+ u
a
9
=
5
4
u
18
+
9
2
u
17
+ ··· +
11
2
u +
5
4
1
2
u
18
7
4
u
17
+ ···
5
4
u
5
4
a
10
=
0.750000u
18
+ 2.75000u
17
+ ··· 19.2500u
2
+ 4.25000u
1
2
u
18
7
4
u
17
+ ···
5
4
u
5
4
a
4
=
u
u
3
+ u
a
8
=
3
4
u
18
+
5
2
u
17
+ ··· +
9
2
u +
3
4
1
2
u
18
9
4
u
17
+ ··· +
1
4
u
3
4
a
11
=
1
4
u
17
+
3
4
u
16
+ ··· +
3
4
u +
7
4
1
4
u
18
u
17
+ ··· u
1
4
a
7
=
1
4
u
18
3
4
u
17
+ ···
7
4
u 1
1
4
u
18
+ u
17
+ ··· + 2u +
1
4
a
7
=
1
4
u
18
3
4
u
17
+ ···
7
4
u 1
1
4
u
18
+ u
17
+ ··· + 2u +
1
4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
18
23
2
u
17
+ 43u
16
99u
15
+ 208u
14
350u
13
+
1049
2
u
12
708u
11
+
1657
2
u
10
926u
9
+ 884u
8
803u
7
+
1299
2
u
6
448u
5
+
615
2
u
4
136u
3
+
133
2
u
2
17u + 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
19
+ 4u
18
+ ··· + 12u
2
1
c
2
u
19
+ 14u
18
+ ··· + 24u 1
c
3
, c
8
u
19
+ u
18
+ ··· + 160u 64
c
5
u
19
4u
18
+ ··· + u 2
c
6
u
19
+ 3u
18
+ ··· + 2759u 937
c
7
, c
10
u
19
3u
18
+ ··· + u 1
c
9
, c
11
u
19
3u
18
+ ··· + 11u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
19
+ 14y
18
+ ··· + 24y 1
c
2
y
19
14y
18
+ ··· + 612y 1
c
3
, c
8
y
19
+ 35y
18
+ ··· 15360y 4096
c
5
y
19
42y
18
+ ··· + 13y 4
c
6
y
19
+ 89y
18
+ ··· + 15394803y 877969
c
7
, c
10
y
19
3y
18
+ ··· + 11y 1
c
9
, c
11
y
19
+ 29y
18
+ ··· + 11y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.578849 + 0.831148I
a = 0.236375 0.103692I
b = 0.223009 + 0.136441I
0.57171 2.29308I 0.43534 + 5.97155I
u = 0.578849 0.831148I
a = 0.236375 + 0.103692I
b = 0.223009 0.136441I
0.57171 + 2.29308I 0.43534 5.97155I
u = 0.379573 + 1.066790I
a = 0.384017 + 0.248046I
b = 0.118852 + 0.503818I
1.34954 2.72131I 3.10172 + 4.42849I
u = 0.379573 1.066790I
a = 0.384017 0.248046I
b = 0.118852 0.503818I
1.34954 + 2.72131I 3.10172 4.42849I
u = 0.066477 + 0.849480I
a = 0.390573 0.852872I
b = 0.698534 0.388480I
0.275217 + 0.309939I 6.84413 1.19842I
u = 0.066477 0.849480I
a = 0.390573 + 0.852872I
b = 0.698534 + 0.388480I
0.275217 0.309939I 6.84413 + 1.19842I
u = 1.158440 + 0.036055I
a = 0.02963 1.59757I
b = 0.02328 + 1.85176I
13.35980 3.50957I 4.64823 + 2.14006I
u = 1.158440 0.036055I
a = 0.02963 + 1.59757I
b = 0.02328 1.85176I
13.35980 + 3.50957I 4.64823 2.14006I
u = 0.239802 + 1.225750I
a = 1.218930 0.275212I
b = 0.62964 1.42811I
5.41009 + 5.31951I 2.17850 4.32462I
u = 0.239802 1.225750I
a = 1.218930 + 0.275212I
b = 0.62964 + 1.42811I
5.41009 5.31951I 2.17850 + 4.32462I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.105421 + 1.309260I
a = 0.964760 + 0.228937I
b = 0.401445 + 1.238990I
6.74492 0.62050I 0.784704 + 1.156660I
u = 0.105421 1.309260I
a = 0.964760 0.228937I
b = 0.401445 1.238990I
6.74492 + 0.62050I 0.784704 1.156660I
u = 0.493476 + 0.148245I
a = 0.12816 2.14991I
b = 0.255468 + 1.079930I
2.12600 2.49879I 4.77209 + 3.99040I
u = 0.493476 0.148245I
a = 0.12816 + 2.14991I
b = 0.255468 1.079930I
2.12600 + 2.49879I 4.77209 3.99040I
u = 0.58478 + 1.39635I
a = 1.225590 + 0.379250I
b = 0.18714 1.93313I
17.6117 + 9.7005I 2.62109 4.88323I
u = 0.58478 1.39635I
a = 1.225590 0.379250I
b = 0.18714 + 1.93313I
17.6117 9.7005I 2.62109 + 4.88323I
u = 0.54417 + 1.43391I
a = 1.179380 0.320996I
b = 0.18150 + 1.86580I
17.9983 + 2.5634I 2.10495 0.56524I
u = 0.54417 1.43391I
a = 1.179380 + 0.320996I
b = 0.18150 1.86580I
17.9983 2.5634I 2.10495 + 0.56524I
u = 0.202383
a = 1.82553
b = 0.369456
0.846922 12.0190
6
II. I
u
2
= h−au + b, a
3
+ a
2
u + a
2
+ 2au 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
6
=
1
0
a
9
=
a
au
a
10
=
au + a
au
a
4
=
u
u + 1
a
8
=
a
au
a
11
=
a
2
+ 1
a
2
u a
2
a
7
=
a
2
u 1
a
2
u a
2
a
7
=
a
2
u 1
a
2
u a
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5a
2
u 6a
2
5au a + u + 14
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
3
c
3
, c
8
u
6
c
4
(u
2
u + 1)
3
c
6
, c
9
(u
3
+ u
2
+ 2u + 1)
2
c
7
(u
3
u
2
+ 1)
2
c
10
(u
3
+ u
2
1)
2
c
11
(u
3
u
2
+ 2u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
8
y
6
c
6
, c
9
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
7
, c
10
(y
3
y
2
+ 2y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.239560 + 0.467306I
b = 0.215080 1.307140I
3.02413 + 0.79824I 2.74410 0.29766I
u = 0.500000 + 0.866025I
a = 1.024480 0.839835I
b = 0.215080 + 1.307140I
3.02413 4.85801I 4.03424 + 5.28153I
u = 0.500000 + 0.866025I
a = 0.284920 0.493496I
b = 0.569840
1.11345 2.02988I 12.72167 + 1.07831I
u = 0.500000 0.866025I
a = 1.024480 + 0.839835I
b = 0.215080 1.307140I
3.02413 0.79824I 2.74410 + 0.29766I
u = 0.500000 0.866025I
a = 1.239560 0.467306I
b = 0.215080 + 1.307140I
3.02413 + 4.85801I 4.03424 5.28153I
u = 0.500000 0.866025I
a = 0.284920 + 0.493496I
b = 0.569840
1.11345 + 2.02988I 12.72167 1.07831I
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
3
)(u
19
+ 4u
18
+ ··· + 12u
2
1)
c
2
((u
2
+ u + 1)
3
)(u
19
+ 14u
18
+ ··· + 24u 1)
c
3
, c
8
u
6
(u
19
+ u
18
+ ··· + 160u 64)
c
4
((u
2
u + 1)
3
)(u
19
+ 4u
18
+ ··· + 12u
2
1)
c
5
((u
2
+ u + 1)
3
)(u
19
4u
18
+ ··· + u 2)
c
6
((u
3
+ u
2
+ 2u + 1)
2
)(u
19
+ 3u
18
+ ··· + 2759u 937)
c
7
((u
3
u
2
+ 1)
2
)(u
19
3u
18
+ ··· + u 1)
c
9
((u
3
+ u
2
+ 2u + 1)
2
)(u
19
3u
18
+ ··· + 11u 1)
c
10
((u
3
+ u
2
1)
2
)(u
19
3u
18
+ ··· + u 1)
c
11
((u
3
u
2
+ 2u 1)
2
)(u
19
3u
18
+ ··· + 11u 1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
3
)(y
19
+ 14y
18
+ ··· + 24y 1)
c
2
((y
2
+ y + 1)
3
)(y
19
14y
18
+ ··· + 612y 1)
c
3
, c
8
y
6
(y
19
+ 35y
18
+ ··· 15360y 4096)
c
5
((y
2
+ y + 1)
3
)(y
19
42y
18
+ ··· + 13y 4)
c
6
((y
3
+ 3y
2
+ 2y 1)
2
)(y
19
+ 89y
18
+ ··· + 1.53948 × 10
7
y 877969)
c
7
, c
10
((y
3
y
2
+ 2y 1)
2
)(y
19
3y
18
+ ··· + 11y 1)
c
9
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
19
+ 29y
18
+ ··· + 11y 1)
12