11n
2
(K11n
2
)
A knot diagram
1
Linearized knot diagam
5 1 7 2 3 10 3 6 11 7 9
Solving Sequence
7,11
10
3,6
5 9 1 2 4 8
c
10
c
6
c
5
c
9
c
11
c
2
c
4
c
8
c
1
, c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−2u
33
5u
32
+ ··· + 2b u, 2u
33
4u
32
+ ··· + a + 1, u
34
+ 3u
33
+ ··· + 3u
2
1i
I
u
2
= h−u
2
b + b
2
+ bu u + 1, a, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−2u
33
5u
32
+· · ·+2bu, 2u
33
4u
32
+· · ·+a+1 , u
34
+3u
33
+· · ·+3u
2
1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
2u
33
+ 4u
32
+ ··· + 2u 1
u
33
+
5
2
u
32
+ ··· 2u
2
+
1
2
u
a
6
=
u
u
3
+ u
a
5
=
u
4
+ u
2
1
1
2
u
32
u
31
+ ··· + 3u
2
+
3
2
u
a
9
=
u
2
+ 1
u
2
a
1
=
u
4
u
2
+ 1
u
4
a
2
=
1
2
u
33
+ u
32
+ ··· + 2u +
1
2
1
2
u
33
+ 4u
32
+ ··· + 4u 2
a
4
=
2u
33
4u
32
+ ··· 2u + 1
2u
33
11
2
u
32
+ ···
5
2
u + 2
a
8
=
u
6
+ u
4
2u
2
+ 1
u
8
2u
6
+ 2u
4
2u
2
a
8
=
u
6
+ u
4
2u
2
+ 1
u
8
2u
6
+ 2u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
2
u
33
+ 19u
32
+ ··· + 10u
25
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
34
+ 4u
33
+ ··· + 7u + 1
c
2
u
34
+ 20u
33
+ ··· 31u + 1
c
3
, c
7
u
34
+ u
33
+ ··· 160u 64
c
5
u
34
4u
33
+ ··· + 19u + 2
c
6
, c
10
u
34
+ 3u
33
+ ··· + 3u
2
1
c
8
u
34
3u
33
+ ··· + 4u 1
c
9
, c
11
u
34
+ 13u
33
+ ··· + 6u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
34
+ 20y
33
+ ··· 31y + 1
c
2
y
34
8y
33
+ ··· 1215y + 1
c
3
, c
7
y
34
35y
33
+ ··· 29696y + 4096
c
5
y
34
36y
33
+ ··· 209y + 4
c
6
, c
10
y
34
13y
33
+ ··· 6y + 1
c
8
y
34
41y
33
+ ··· 6y + 1
c
9
, c
11
y
34
+ 19y
33
+ ··· + 122y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.992042 + 0.199548I
a = 0.462101 0.975157I
b = 0.138300 0.172846I
3.59663 + 0.10881I 14.08590 0.63240I
u = 0.992042 0.199548I
a = 0.462101 + 0.975157I
b = 0.138300 + 0.172846I
3.59663 0.10881I 14.08590 + 0.63240I
u = 0.794834 + 0.581726I
a = 0.594117 + 0.707965I
b = 0.427182 0.203209I
1.44216 0.29929I 6.95462 + 0.76731I
u = 0.794834 0.581726I
a = 0.594117 0.707965I
b = 0.427182 + 0.203209I
1.44216 + 0.29929I 6.95462 0.76731I
u = 0.524940 + 0.808295I
a = 0.56013 + 1.37764I
b = 0.888548 + 0.835142I
2.09915 1.64840I 5.13395 + 0.24192I
u = 0.524940 0.808295I
a = 0.56013 1.37764I
b = 0.888548 0.835142I
2.09915 + 1.64840I 5.13395 0.24192I
u = 0.840078 + 0.614168I
a = 0.613136 0.577949I
b = 1.41546 + 0.81235I
1.86820 2.41838I 3.21586 + 3.79872I
u = 0.840078 0.614168I
a = 0.613136 + 0.577949I
b = 1.41546 0.81235I
1.86820 + 2.41838I 3.21586 3.79872I
u = 0.560590 + 0.879313I
a = 0.41210 1.50617I
b = 1.46754 1.00369I
5.42766 6.75489I 7.92215 + 3.41714I
u = 0.560590 0.879313I
a = 0.41210 + 1.50617I
b = 1.46754 + 1.00369I
5.42766 + 6.75489I 7.92215 3.41714I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.412943 + 0.845694I
a = 0.76752 1.52606I
b = 0.44847 1.45277I
6.32362 + 2.72594I 8.84636 2.76466I
u = 0.412943 0.845694I
a = 0.76752 + 1.52606I
b = 0.44847 + 1.45277I
6.32362 2.72594I 8.84636 + 2.76466I
u = 0.893031 + 0.587012I
a = 0.693593 0.583293I
b = 0.956249 0.192787I
1.13021 + 4.95087I 8.36503 5.99635I
u = 0.893031 0.587012I
a = 0.693593 + 0.583293I
b = 0.956249 + 0.192787I
1.13021 4.95087I 8.36503 + 5.99635I
u = 0.985371 + 0.556607I
a = 0.620847 + 0.887273I
b = 1.96665 0.76219I
1.53468 5.70085I 9.72834 + 6.45202I
u = 0.985371 0.556607I
a = 0.620847 0.887273I
b = 1.96665 + 0.76219I
1.53468 + 5.70085I 9.72834 6.45202I
u = 0.834354 + 0.777211I
a = 0.618925 + 0.083135I
b = 0.304799 + 1.255790I
2.63328 1.69138I 7.83080 + 4.78233I
u = 0.834354 0.777211I
a = 0.618925 0.083135I
b = 0.304799 1.255790I
2.63328 + 1.69138I 7.83080 4.78233I
u = 1.15996
a = 1.41319
b = 1.11298
8.01260 11.0100
u = 0.691950 + 0.428071I
a = 0.759172 + 0.721685I
b = 1.51068 1.17159I
0.45796 + 1.44409I 6.46359 + 0.67387I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.691950 0.428071I
a = 0.759172 0.721685I
b = 1.51068 + 1.17159I
0.45796 1.44409I 6.46359 0.67387I
u = 1.197460 + 0.057621I
a = 1.51287 0.16435I
b = 0.911142 + 0.347693I
12.04690 5.13421I 13.68860 + 3.30024I
u = 1.197460 0.057621I
a = 1.51287 + 0.16435I
b = 0.911142 0.347693I
12.04690 + 5.13421I 13.68860 3.30024I
u = 0.921897 + 0.768739I
a = 0.213500 0.587608I
b = 1.053180 0.826825I
2.37182 4.13713I 9.61954 + 1.32790I
u = 0.921897 0.768739I
a = 0.213500 + 0.587608I
b = 1.053180 + 0.826825I
2.37182 + 4.13713I 9.61954 1.32790I
u = 1.072580 + 0.660990I
a = 1.205520 0.383155I
b = 1.20314 2.13287I
3.72457 + 7.16368I 7.25453 4.71165I
u = 1.072580 0.660990I
a = 1.205520 + 0.383155I
b = 1.20314 + 2.13287I
3.72457 7.16368I 7.25453 + 4.71165I
u = 1.110150 + 0.615554I
a = 1.267740 + 0.575502I
b = 0.56941 + 2.11006I
8.42620 + 2.66430I 11.45013 1.91985I
u = 1.110150 0.615554I
a = 1.267740 0.575502I
b = 0.56941 2.11006I
8.42620 2.66430I 11.45013 + 1.91985I
u = 1.089780 + 0.695595I
a = 1.309000 + 0.281439I
b = 1.38267 + 2.54914I
7.0419 + 12.5932I 9.63219 7.64177I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.089780 0.695595I
a = 1.309000 0.281439I
b = 1.38267 2.54914I
7.0419 12.5932I 9.63219 + 7.64177I
u = 0.643512
a = 0.650445
b = 0.109056
0.881314 11.5070
u = 0.221560 + 0.275264I
a = 0.92943 + 1.46869I
b = 0.710592 0.584374I
0.37760 + 1.65869I 3.04964 3.10072I
u = 0.221560 0.275264I
a = 0.92943 1.46869I
b = 0.710592 + 0.584374I
0.37760 1.65869I 3.04964 + 3.10072I
8
II. I
u
2
= h−u
2
b + b
2
+ bu u + 1, a, u
3
u
2
+ 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
10
=
1
u
2
a
3
=
0
b
a
6
=
u
u
2
+ u + 1
a
5
=
u
2u
2
+ b + 2u + 1
a
9
=
u
2
+ 1
u
2
a
1
=
u
u
2
u 1
a
2
=
u
2
b
bu + 2b
a
4
=
0
b
a
8
=
0
u
a
8
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
b 6bu u
2
+ 6u 11
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
3
c
3
, c
7
u
6
c
4
(u
2
u + 1)
3
c
6
(u
3
+ u
2
1)
2
c
8
, c
11
(u
3
+ u
2
+ 2u + 1)
2
c
9
(u
3
u
2
+ 2u 1)
2
c
10
(u
3
u
2
+ 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
7
y
6
c
6
, c
10
(y
3
y
2
+ 2y 1)
2
c
8
, c
9
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0
b = 0.818128 0.292480I
3.02413 4.85801I 2.74410 + 7.22587I
u = 0.877439 + 0.744862I
a = 0
b = 0.155769 + 0.854759I
3.02413 0.79824I 4.03424 1.64667I
u = 0.877439 0.744862I
a = 0
b = 0.818128 + 0.292480I
3.02413 + 4.85801I 2.74410 7.22587I
u = 0.877439 0.744862I
a = 0
b = 0.155769 0.854759I
3.02413 + 0.79824I 4.03424 + 1.64667I
u = 0.754878
a = 0
b = 0.662359 + 1.147240I
1.11345 2.02988I 12.72167 + 5.84990I
u = 0.754878
a = 0
b = 0.662359 1.147240I
1.11345 + 2.02988I 12.72167 5.84990I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
3
)(u
34
+ 4u
33
+ ··· + 7u + 1)
c
2
((u
2
+ u + 1)
3
)(u
34
+ 20u
33
+ ··· 31u + 1)
c
3
, c
7
u
6
(u
34
+ u
33
+ ··· 160u 64)
c
4
((u
2
u + 1)
3
)(u
34
+ 4u
33
+ ··· + 7u + 1)
c
5
((u
2
+ u + 1)
3
)(u
34
4u
33
+ ··· + 19u + 2)
c
6
((u
3
+ u
2
1)
2
)(u
34
+ 3u
33
+ ··· + 3u
2
1)
c
8
((u
3
+ u
2
+ 2u + 1)
2
)(u
34
3u
33
+ ··· + 4u 1)
c
9
((u
3
u
2
+ 2u 1)
2
)(u
34
+ 13u
33
+ ··· + 6u + 1)
c
10
((u
3
u
2
+ 1)
2
)(u
34
+ 3u
33
+ ··· + 3u
2
1)
c
11
((u
3
+ u
2
+ 2u + 1)
2
)(u
34
+ 13u
33
+ ··· + 6u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
3
)(y
34
+ 20y
33
+ ··· 31y + 1)
c
2
((y
2
+ y + 1)
3
)(y
34
8y
33
+ ··· 1215y + 1)
c
3
, c
7
y
6
(y
34
35y
33
+ ··· 29696y + 4096)
c
5
((y
2
+ y + 1)
3
)(y
34
36y
33
+ ··· 209y + 4)
c
6
, c
10
((y
3
y
2
+ 2y 1)
2
)(y
34
13y
33
+ ··· 6y + 1)
c
8
((y
3
+ 3y
2
+ 2y 1)
2
)(y
34
41y
33
+ ··· 6y + 1)
c
9
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
34
+ 19y
33
+ ··· + 122y + 1)
14