11n
3
(K11n
3
)
A knot diagram
1
Linearized knot diagam
5 1 8 2 3 9 11 3 1 7 10
Solving Sequence
7,10
11
3,8
4 1 2 9 6 5
c
10
c
7
c
3
c
11
c
2
c
9
c
6
c
5
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−5u
26
+ 11u
25
+ ··· + 2b 5, u
25
2u
24
+ ··· + 2a + 5u, u
27
3u
26
+ ··· + 3u 1i
I
u
2
= hu
2
a + b a, u
2
a + a
2
au + u + 1, u
3
+ u
2
1i
* 2 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−5u
26
+11u
25
+· · ·+2b5, u
25
2u
24
+· · ·+2a+5u, u
27
3u
26
+· · ·+3u1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
1
2
u
25
+ u
24
+ ··· +
15
2
u
2
5
2
u
5
2
u
26
11
2
u
25
+ ··· 5u +
5
2
a
8
=
u
u
3
+ u
a
4
=
u
26
+
5
2
u
25
+ ··· +
3
2
u 2
1
2
u
26
3
2
u
25
+ ··· + 5u
2
+
1
2
a
1
=
u
2
+ 1
u
2
a
2
=
u
25
+
3
2
u
24
+ ···
3
2
u
1
2
2u
26
5u
25
+ ··· 4u + 2
a
9
=
u
4
u
2
+ 1
u
4
a
6
=
u
9
+ 2u
7
3u
5
+ 2u
3
u
u
9
+ u
7
u
5
+ u
a
5
=
1
2
u
25
u
24
+ ··· +
3
2
u 1
1
2
u
26
+
3
2
u
25
+ ··· + 3u
1
2
a
5
=
1
2
u
25
u
24
+ ··· +
3
2
u 1
1
2
u
26
+
3
2
u
25
+ ··· + 3u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
23
2
u
26
24u
25
+ ···
69
2
u +
25
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
27
+ 4u
26
+ ··· + 4u + 1
c
2
u
27
+ 6u
26
+ ··· + 4u 1
c
3
, c
8
u
27
u
26
+ ··· 32u 64
c
5
u
27
4u
26
+ ··· + 6988u + 1153
c
6
u
27
+ 3u
26
+ ··· u 1
c
7
, c
10
u
27
3u
26
+ ··· + 3u 1
c
9
, c
11
u
27
11u
26
+ ··· 9u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
27
+ 6y
26
+ ··· + 4y 1
c
2
y
27
+ 34y
26
+ ··· + 136y 1
c
3
, c
8
y
27
+ 35y
26
+ ··· + 1024y 4096
c
5
y
27
+ 62y
26
+ ··· 7660244y 1329409
c
6
y
27
47y
26
+ ··· 9y 1
c
7
, c
10
y
27
11y
26
+ ··· 9y 1
c
9
, c
11
y
27
+ 13y
26
+ ··· + 127y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.456584 + 0.907647I
a = 1.48477 0.61163I
b = 1.25986 + 0.88956I
7.22245 + 1.02048I 3.69178 1.94630I
u = 0.456584 0.907647I
a = 1.48477 + 0.61163I
b = 1.25986 0.88956I
7.22245 1.02048I 3.69178 + 1.94630I
u = 0.964922 + 0.396644I
a = 0.252553 + 0.564190I
b = 1.21469 + 1.07115I
2.07980 + 1.34949I 7.85827 1.99966I
u = 0.964922 0.396644I
a = 0.252553 0.564190I
b = 1.21469 1.07115I
2.07980 1.34949I 7.85827 + 1.99966I
u = 0.524863 + 0.914721I
a = 1.55069 + 0.62247I
b = 1.39313 0.99095I
6.79111 5.64536I 3.12437 + 2.66728I
u = 0.524863 0.914721I
a = 1.55069 0.62247I
b = 1.39313 + 0.99095I
6.79111 + 5.64536I 3.12437 2.66728I
u = 0.974186 + 0.462885I
a = 0.529071 0.939257I
b = 0.169302 0.547843I
1.69325 4.38642I 5.48340 + 6.16823I
u = 0.974186 0.462885I
a = 0.529071 + 0.939257I
b = 0.169302 + 0.547843I
1.69325 + 4.38642I 5.48340 6.16823I
u = 0.838777 + 0.356107I
a = 1.00459 + 1.02558I
b = 0.373891 + 0.589972I
0.942185 + 1.033980I 3.86006 + 2.18156I
u = 0.838777 0.356107I
a = 1.00459 1.02558I
b = 0.373891 0.589972I
0.942185 1.033980I 3.86006 2.18156I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.685911 + 0.573005I
a = 1.282770 0.152453I
b = 0.13458 1.76175I
1.54191 1.16661I 0.74423 + 1.49202I
u = 0.685911 0.573005I
a = 1.282770 + 0.152453I
b = 0.13458 + 1.76175I
1.54191 + 1.16661I 0.74423 1.49202I
u = 0.821117 + 0.748475I
a = 0.420089 0.037335I
b = 0.229956 + 0.061310I
3.44772 1.77523I 1.86458 + 4.75426I
u = 0.821117 0.748475I
a = 0.420089 + 0.037335I
b = 0.229956 0.061310I
3.44772 + 1.77523I 1.86458 4.75426I
u = 0.960749 + 0.570989I
a = 0.404574 1.204920I
b = 1.74421 1.76576I
0.68885 + 5.76088I 3.34925 6.52520I
u = 0.960749 0.570989I
a = 0.404574 + 1.204920I
b = 1.74421 + 1.76576I
0.68885 5.76088I 3.34925 + 6.52520I
u = 0.866757
a = 0.0957077
b = 0.622584
1.43125 6.84050
u = 0.922854 + 0.737156I
a = 0.035124 0.374638I
b = 0.045924 0.210874I
3.14099 3.86941I 0.026459 + 0.626604I
u = 0.922854 0.737156I
a = 0.035124 + 0.374638I
b = 0.045924 + 0.210874I
3.14099 + 3.86941I 0.026459 0.626604I
u = 1.242910 + 0.029552I
a = 0.02740 1.50043I
b = 0.006371 0.831742I
13.47880 3.52700I 8.35802 + 2.34346I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.242910 0.029552I
a = 0.02740 + 1.50043I
b = 0.006371 + 0.831742I
13.47880 + 3.52700I 8.35802 2.34346I
u = 1.135150 + 0.655354I
a = 0.445958 + 1.202700I
b = 2.34089 + 0.91299I
9.30444 + 4.72653I 5.93859 2.37138I
u = 1.135150 0.655354I
a = 0.445958 1.202700I
b = 2.34089 0.91299I
9.30444 4.72653I 5.93859 + 2.37138I
u = 1.118230 + 0.692002I
a = 0.51886 1.31753I
b = 2.49328 0.90508I
8.6132 + 11.5634I 4.87720 6.78953I
u = 1.118230 0.692002I
a = 0.51886 + 1.31753I
b = 2.49328 + 0.90508I
8.6132 11.5634I 4.87720 + 6.78953I
u = 0.020052 + 0.347458I
a = 1.54687 0.86649I
b = 0.423137 + 0.416168I
0.075638 + 1.377020I 0.36727 4.75192I
u = 0.020052 0.347458I
a = 1.54687 + 0.86649I
b = 0.423137 0.416168I
0.075638 1.377020I 0.36727 + 4.75192I
7
II. I
u
2
= hu
2
a + b a, u
2
a + a
2
au + u + 1, u
3
+ u
2
1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
a
u
2
a + a
a
8
=
u
u
2
+ u 1
a
4
=
a
u
2
a + a
a
1
=
u
2
+ 1
u
2
a
2
=
u
2
a + au
0
a
9
=
u
u
2
+ u 1
a
6
=
u
2
1
u
2
a
5
=
a u 1
u
2
a + a
a
5
=
a u 1
u
2
a + a
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
a + 6au u
2
+ 2u + 1
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
3
c
3
, c
8
u
6
c
4
(u
2
u + 1)
3
c
6
, c
9
(u
3
+ u
2
+ 2u + 1)
2
c
7
(u
3
u
2
+ 1)
2
c
10
(u
3
+ u
2
1)
2
c
11
(u
3
u
2
+ 2u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
8
y
6
c
6
, c
9
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
7
, c
10
(y
3
y
2
+ 2y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.818128 + 0.292480I
b = 1.024480 0.839835I
3.02413 4.85801I 0.94625 + 7.60556I
u = 0.877439 + 0.744862I
a = 0.155769 0.854759I
b = 1.239560 0.467306I
3.02413 0.79824I 2.23639 1.26697I
u = 0.877439 0.744862I
a = 0.818128 0.292480I
b = 1.024480 + 0.839835I
3.02413 + 4.85801I 0.94625 7.60556I
u = 0.877439 0.744862I
a = 0.155769 + 0.854759I
b = 1.239560 + 0.467306I
3.02413 + 0.79824I 2.23639 + 1.26697I
u = 0.754878
a = 0.662359 + 1.147240I
b = 0.284920 + 0.493496I
1.11345 2.02988I 5.31735 + 5.84990I
u = 0.754878
a = 0.662359 1.147240I
b = 0.284920 0.493496I
1.11345 + 2.02988I 5.31735 5.84990I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
3
)(u
27
+ 4u
26
+ ··· + 4u + 1)
c
2
((u
2
+ u + 1)
3
)(u
27
+ 6u
26
+ ··· + 4u 1)
c
3
, c
8
u
6
(u
27
u
26
+ ··· 32u 64)
c
4
((u
2
u + 1)
3
)(u
27
+ 4u
26
+ ··· + 4u + 1)
c
5
((u
2
+ u + 1)
3
)(u
27
4u
26
+ ··· + 6988u + 1153)
c
6
((u
3
+ u
2
+ 2u + 1)
2
)(u
27
+ 3u
26
+ ··· u 1)
c
7
((u
3
u
2
+ 1)
2
)(u
27
3u
26
+ ··· + 3u 1)
c
9
((u
3
+ u
2
+ 2u + 1)
2
)(u
27
11u
26
+ ··· 9u 1)
c
10
((u
3
+ u
2
1)
2
)(u
27
3u
26
+ ··· + 3u 1)
c
11
((u
3
u
2
+ 2u 1)
2
)(u
27
11u
26
+ ··· 9u 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
3
)(y
27
+ 6y
26
+ ··· + 4y 1)
c
2
((y
2
+ y + 1)
3
)(y
27
+ 34y
26
+ ··· + 136y 1)
c
3
, c
8
y
6
(y
27
+ 35y
26
+ ··· + 1024y 4096)
c
5
((y
2
+ y + 1)
3
)(y
27
+ 62y
26
+ ··· 7660244y 1329409)
c
6
((y
3
+ 3y
2
+ 2y 1)
2
)(y
27
47y
26
+ ··· 9y 1)
c
7
, c
10
((y
3
y
2
+ 2y 1)
2
)(y
27
11y
26
+ ··· 9y 1)
c
9
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
27
+ 13y
26
+ ··· + 127y 1)
13